Summary of Sweetpotato Breeding Progress for the East and Central Africa Support Platform 2009-2014

R. Mwanga, S. Tumwegamire,C. Wasonga, G. Ssemakula, J. Kreuze,S.Fuentes, J. Low, W. Gruneberg

12th Annual Sweetpotato Breeders' Meeting, Blantyre, Malawi June 17-20, 2014

SWEETPOTATO ACTION FOR SECURITY AND HEALTH IN AFRICA

Outline of presentation

- Main objectives of sweetpotato breeding in East and Central Africa
- Progress to date

Objective: breed new populations with new methods & varietal development

SASHA Sweetpotato Action for Security and Health in Africa

 Generate a radically expanded range of sweetpotato varieties that combine different quality traits with significant improvements in yielding ability

Generate by population improvement new

populations for major needs of users:

- Sweetpotato virus disease (SPVD) resistance (East Africa)
- Incorporate important traits e.g. high beta-carotene content, dual purpose types for animal feed

Main Objective, continued

- Other new breeding methods to use:
 - heterosis into sweetpotato breeding
 - molecular markers for breeding for virus resistance
- Redesign the sweetpotato breeding systems in the region to produce varieties in 3-4 years instead of the current 7-8 years: accelerated breeding

Developing populations for SPVD resistance and quality traits

- Two distinct genepools (Population Uganda A and Pop Ug B) were formed using molecular markers (18 SSR markers)
- Controlled crossing (inter- and intra-gene-pool) for population improvement and polycross crossing are in progress

Crossing between populations

Small crossing block (CB)								
Big CB	A1 Eju	A3 Dimb	A4 NAS5/58	A5 NAS7	A7 NAS10O	A8 NK297L		
B1 Res	1c 207-52	3C 123-72	4C 200-7	5C 261-112	7C 98-86	8C 239-174		
B2 Mag	9c 156	11c 363-2	12c 280	13c 150-243	15c 201-222	16c 262-80		
B5 Mug	33c 426	35c 481	36c 16-473	37c 108-166	39c 85-39	40c 216-190		
B7 Nka	49c 136-81	51c 53-226	52c 13-4	53c 259-17	55c 32-3	56c 559-143		
B8 Huar	57c 890-77	59c 1543-171	60c 0-121	61c 233-125	63c 466-272	64 <mark>c 495-2</mark> 19		

Susceptible by less susceptible/resistant crosses

Resistant by resistant crosses

Total of 64 crosses Shown: 30 crosses

Crosses within small crossing block

Parent	A1 Eju	A2 NAS1	A3 Dimb	A4 NAS/58	A5 NAS 7	A6 SPK004	A7 NAS10	A8 NK259L
A1 Ejumula	Х	317-237	850-144	364-396	361-180	98-825	299-22	401 -209
A2 NASPOT 1		х	27-0	339-1089	104-4	58-54	61-160	27-17
A3 Dimbuka			Х	622-684	30-19	24-6	56-723	311-320
A4 NASPOT5/58				X	320-146	153-62	5-5	299-180
A5 NASPOT 7					Х	42-17	86-8	310
A6 SPK004						х	218-8	95
A7 NASPOT 10 O	X						<mark>453-1</mark> 87	
A8 NK259L	Total of 28 crosses					X		

Crosses within big crossing block (Population Uganda B)

Parent	B1	B2	B3	B4	B5	B6	B7	B8
	Res	Mag	NAS 5	Wag	Mug	NAS11	Nka	Hua
B1 Resisto	Х	256	367-45	124-15	451	69	666-311	453
B2 Magabali		Х	154-248	223	170-50	197	680-512	43-337
B3 NASPOT 5			X	81-212	117-110	5-5	64-81	224-31
B4 Wagabolige				Х	284-30	819-380	587-587	803-154
B5 Mugande					X	304-8	194-122	305-321
B6 NASPOT 11					<u></u>	Х	65-2	224-285
B7 New Kawogo							Х	<mark>1404</mark>
B8 Huarmeyano								X

Total of 28 crosses

On-going trials

	No. of	
Trial	clones	Sites
1) Preliminary trial (PT)	41	3 (NaCRRI, Serere, Kachwekano)
 SPVD resistance* 	81	2 (NaCRRI, Kachwekano)
3) Dual purpose/	2,686	3 (NaCRRI, Kachwekano)
high altitude		
4) Controlled Vs OP		3 (NaCRRI, Serere, Kachwekano)
Ejumula x NKA	50	
OP Ejumula	105	
Wag x NASPOT 1	227	
OP Wagabolige	104	
	SPVD	Alternaria blight
	* From (CIP/Lima

SPVD resistance evaluation CIP/Lima population SASHA Security and Health in Africa

Sweetpotato Virus Disease (SPVD) Causes Significant Yield Losses (50->90%)

Clark

Wilmer J. Cuellar Segundo Fuentes

Jan F. Kreuze

Richard William Gibson

Mukasa

Clark et al. 2012: Plant Disease

Quantification of virus using qRT-PCR in clones from CIP/Lima, at Namulonge

May-August 2012

Status of AGRA Collaboration

AG	RA countries ¹	Non-AGRA
Supported	Submitted	
Malawi (renewal/process) Rwanda (renewal/draft)	Ghana (In process) Uganda, approved	Angola
Tanzania (renewal/draft)	Kenya, rejected	Burundi
Kenya (Njoro, W. Kenya) ²	Burkina Faso ³ , under review	Madagascar
Nigeria	Ethiopia ⁴ , needed national grant	S. Africa
Zambia		
Mozambique (Renewed)		

¹ Criteria for AGRA support: Active sweetpotato breeding program (full time breeder, on-going breeding activities, including crossing
 ² Funded before start of SASHA project, now 2nd phase
 ³ One PhD supported by AGRA at W. African Center for Crop Improvement (WACCI), Ghana, ⁴and at Kwazulu-Natal University, S. Africa

Progress: CloneSelector 3.1

Includes Augmented and Alpha designs,

 -GGE biplot (genotype and the genotype-by-environment biplot)
 -2 multi-trait selection procedures (Elston index Pesek &Baker index)

 To date: Sweetpotato breeders (21) and technicians trained from 15 countries: Malawi, Rwanda, Tanzania, Kenya, Ghana, Uganda, Ethiopia, Mozambique,

Burkina Faso, S. Africa, Nigeria, Liberia, Zambia, Madagascar

OFSP Catalogue Updated (pdf)

Collected data and pictures for all new released OFSP varieties since 2009 Mozambique (15) Rwanda (2) Malawi (4) Tanzania (2) Uganda (2) Ghana (2) Nigeria (1) Zambia (3)

Varieties released 1992 to 2013

	and the second							
Country	Number of varieties released							
	1999 to 2008	2009 to 2013 (Orange flesh)	Total				
Ethiopia	10	0	(0)	10				
Ghana	0	4	(2)	4				
Kenya	5	7	(5) -2**	10				
Malawi	6	7	(5)	13				
Mozambique	12	20	(15) -1**	31				
Nigeria	3	5	(2)	8				
Rwanda	8	11	(2)	19				
S. Africa	11	18	(5)	29				
Tanzania	6	7	(2)	13				
Uganda	19	3*	(2)	22				
Zambia	7	5	(3)	12				
Total	87	84	(36)	171				
*2013 Application	on for variety relea	ase done; ** 1	st released in Ugan	da				

Hydroponics (sand/aero)

Nutrient content of the solution (220 I)

		weight	
Nutrient		(g)	Details
Calcium nitrate	Ca(NO3)2.4H2O	11.8	NPK, 15-0-0
Potassium phosphate	KH ₂ PO ₄	6.8	NPK, 52% P_2O_5 and 34% K_2O , or 0-52-34
Potassium nitrate	KNO ₃	25.2	NPK, 13-0-44
Magnesium sulphate	MgSO₄·7H₂O	5.0	16% MgO, 13% S
Micronutrients		0.6	Fe 6.5%, Mn 2%, Zn 1%, Cu 0.25%, B 2.1%, Mo 0.25% B, from Solubor, Mo from sodium molybdate and Fe, Mn, Zn, Cu micronutreints are in EDTA form

Sand hydroponics set up

Sand hydroponics

Sand hydroponics (left) and buckets (right)

Vine length (cm) at 72 (series 1) and 46 days (series 2) after 1st and 2nd cutting

Two-node cuttings, 72 (harvest 1) and 46 days (harvest 2) after 1st and 2nd cutting

Potential and Challenges

- Potential to produce clean stocks at low cost (vs tissue culture)
- Multiplication rate in sand hydroponics still low
- Optimize sand hydroponics conditions
- •Determine economics of sand hydroponics under local conditions

Major Lessons Learned

 Changing venue for annual breeders' meeting and training exposes breeders to different methods, conditions, and challenges, enhancing the community of practice 1st year: Uganda 2nd year: Mozambique 3rd year: Ghent University, Belgium 4th year: Rwanda 5th year: Malawi

 CloneSelector requires follow-up training in-country to get consistent use

Thank you for your attention

