The Genomic Tools for Sweetpotato Improvement Project - GT4SP

Funded by:

Craig Yencho
Department of Horticultural Science
North Carolina State University
Raleigh, NC USA

SPHI Annual Technical Meeting
Villa Portofino Hotel, Kigali, Rwanda
Global Sweetpotato Production

Sweetpotato Production
Areas of Cultivation and Average Yields

Source: International Potato Center: World Sweetpotato Atlas
https://research.cip.cgiar.org/confluence/display/WSA/Global+Sweetpotato+Cultivation
HELLO! COVINGTON

Ending America's dependence on foreign vodka.

THE BEST YAM VODKA ON EARTH®

GOLD MEDAL WINNER — 2013 SAN FRANCISCO WORLD SPIRITS COMPETITION!

COVINGTON SPIRITS LLC, SNOW HILL, NC — COVINGTONVODKA.COM
Growth of Sweetpotato Fries
Jan.’09 – June ‘10

Impressive, but this represents < 2% of total fry market

Estimated Foodservice Volume
US Sweetpotato Growth
1994 - 2014

- SWEET POTATOES - PRODUCTION ($1000)
- SWEET POTATOES - ACRES HARVESTED
African Sweetpotato Production Trends 1993-2013

Source: FAOSTAT3.FAO.ORG (March 2015)
The SASHA Project – Sweetpotato Action for Security and Health, 2009-2014
Lead Institute: International Potato Center

Major Progress in 4 Key Areas
1. Population Development & Varietal Selection
2. Seed Systems
3. Delivery Systems (proof-of-concept)
Focus 1: Breeding & Varietal Development
New Populations

GOAL 1: Generate a radically expanded range of sweetpotato varieties that combine different quality characteristics with significant improvements in yielding ability

- Generate populations to meet dominant needs of users
- All sites: High dry matter
- East & Central Africa: virus-resistance, orange-fleshed, dual purpose for animal feed
- Southern Africa: drought resistance, orange-fleshed
- West Africa: non-sweet sweetpotato, orange & white-fleshed
Focus 2: Breeding & Varietal Development

New Breeding Methods

GOAL 2: Redesign sweetpotato breeding systems in Africa to produce varieties in fewer years (3-4) than currently (7-8 years) - "accelerated breeding"

- More sites at the earliest stages of breeding to substitute for fewer sites over more seasons
- At least one site being the “tough” selection conditions; for instance, consistently drought stressed
- In February 2011, released 15 new, more drought tolerant OFSP in Mozambique
- Also released varieties using accelerated breeding in Malawi and Rwanda
Focus 3 : Breeding & Varietal Development

GOAL 3: Exploitation of Heterosis –
Demonstration that heterosis exists for root and foliage weight… but not for quality traits?

A) Working with two heterotic genepools, on average for first hybrid population:
 - 22.9% root yield jump (dry matter basis)
 - 7.8% more biomass production.

B) Potential of further yield jumps by selecting the best “hybrid family parents”
 - up to 100% more root yield (dry matter basis)
 - up to 85% more biomass production.
 - These 2nd hybrid populations now underway in Uganda, Mozambique, and Peru
Focus 4: Management & Sweetpotato Support Platforms

GOAL 4: Research organized around breeding platforms that integrate and support the work of institutional partners in each sub-region

- Provide technical backstopping
 - Special emphasis on Alliance for a Green Revolution (AGRA) supported national breeding programs and PhD training programs (ACCI & WACCI)
- Assure clean germplasm exchange
- Assure gender-sensitive design and implementation
- Assure comparable data collection between countries engaged in the breeding and germplasm exchange
- Facilitate information exchange
Each Platform with Quality Lab and Clean-up Capacity

Near Infrared Spectrometer enables rapid assessment of major macro- and micronutrients

Screen houses essential for maintaining stocks of disease free vines as primary foundation material
Current Status of Sweetpotato

- The importance and potential of SP has become widely recognized across the globe.
- Many public and private organizations recognize the superior nutritional value in SP compared to many other staple crops and investments are increasing.
- SASHA “1” has been very successful – new breeding programs (4-6), new varieties (18+), 3 region SSP’s established, NIRS technology introduced, seed systems, virus studies, value-added POC’s, etc.
- SASHA “2”, SPHI, etc. recently launched.
 - See http://sweetpotatoknowledge.org/
In short.....A lot of people are more interested in sweetpotato than ever before!!!

However....genomic resources for sweetpotato are noticeably lacking!!
Sweetpotato Genomics Convening
A “Vision” for SP Improvement in SSA
BMGF, Seattle, WA June 3-5, 2013

With the help of the SASHA project, sweetpotato is poised for significant growth in SSA.

However, to fully realize SP’s true long-term potential, we need to invest in modern breeding tools, and integrate them into applied breeding efforts connected to improved seed systems and market-based value-chains.
A “Vision” for MAB Breeding in SSA

Breeding pipeline investments should include:

• **Genomic Resources** –
 – A reference genome – the 1st!
 – Marker development – we are way behind the curve….
 – A robust set of SNP markers and a low-cost genotyping platform
 – Advanced laboratory sequencing linked with developing country phenotyping and breeding activities
 – 2x and 6x mapping, training and test populations

• **Bioinformatics, analytics and database resources** –
 – Stand-alone and web-based bioinformatics resources
 – Sweetpotato database, data collection and phenotyping options
 – New analysis resources

• **Human Resources and Capacity Development** –
 – Continue to assemble and develop a dynamic team of breeders and allied disciplines
 – Training in the use of traditional and genomic breeding methods
 – Effective communication and collaboration
 – Multi-institutional training and capacity development
The Genomic Tools for Sweetpotato Improvement Project – GT4SP

Sweetpotato Genome (MSU, BTI, CIP)

Bioinformatics (NCSU, UQ, CIP)

Genotyping by Sequencing (NCSU, UQ, CIP, BTI)

Sweetpotato Database: Bioinformatics, Phenotyping & Genomics (CIP, MSU, BTI, NaCCRI)

Sweetpotato Breeding & Capacity Development (NCSU, CIP Peru, CIP Uganda, CIP Ghana, CIP at BecA)

An ambitious project to sequence sweetpotato and develop modern breeding tools for a food crop that sustains millions of people in SSA.

Collaborators: Boyce Thompson Institute at Cornell, Michigan State University, University of Queensland, Australia; The International Potato Center, Peru; BioSciences East and Central Africa, Kenya; National Crops Resources Research Institute, Uganda;
GTspi Start-up Meeting,
San Diego, CA Jan. 7-9, 2015
Sweetpotato genome sequencing

Strategy: Sequencing the closely related wild ancestors that are diploid and homozygous
- Examples: potato, wheat, cotton, strawberry
Development of High Yielding Multiple Resistant Sweetpotato Germplasm
Impact of sweetpotato weevils (SPW) in SSA

- Yield losses of 67-100%
- Oviposition and feeding
- Pathogenic microbial accumulation
- Sesquiterpenes
- Impeded translocation of phytochemicals

Difficult to manage
‘New Kawogo’ (NK) x ‘Beauregard’ (B) mapping population at NaCRRI (A), NgeZARDI (B), NaSARRI (C), and overall mean across sites and seasons (D)

Transgressive segregants = 25
Outcomes

• An MAB breeding pipeline that utilizes up- and down-stream breeding methods
• Genomic selection technologies integrated with the SASHA accelerated breeding program
• A new generation of sweetpotato breeders, and a new cadre of molecular geneticists and bioinformatics scientists interested in using the new tools to study sweetpotato.
• Linkage of genomic-based breeding to address the demand of new varieties and “products” will yield maximum long-term ROI on current SP crop improvement investments in SSA.

• Note: We can’t expect “omics” to solve all our breeding problems. Conventional breeding will still be the workhorse, but it will offer new solutions for difficult traits.
Stay tuned
...and engaged!