Maternal Nutrition Outcomes in an Integrated Agriculture, Health and Nutrition Program in Western Kenya

Fred Grant, PhD
On behalf of the Mama SASHA team
f.grant@cgiar.org
MAMA SASHA

5 year, quasi-experimental, nutrition, agriculture and health linkages study in Western Kenya (2009-2014)

Can linking vitamin A rich orange-fleshed sweetpotato (OFSP) access and nutritional training to existing health services improve the consumption of vitamin A rich foods and improve maternal and child nutrition?

Integrated Partnerships: International Potato Center (CIP) in collaboration with PATH (International Health NGO), Univ. of Toronto, Emory Univ., CREADIS & ARDAP (2 Local Agricultural NGOs), MoA & MoH
1. COMMUNITY SENSITISATION
2. ANC CLINIC ATTENDANCE/ NUTRITIONAL COUNSELING
3. VOUCHER ISSUING AT ANC CLINIC

6. AG EXTENSION ACTIVITIES
5. PREGNANT MOTHER’S CLUBS
4. VOUCHER REDEMPTION
1. Purposive selection and random allocation of health facilities
 • 4 intervention, 4 comparison facilities in Bungoma and Busia counties

2. Cross sectional baseline and endline surveys
 • **Objective**: Assess community level impact on diets and child nutrition
 • **Design**: 2 stage cluster randomized baseline / endline surveys in Mar-May 2011 and Mar-May 2014; Detailed costing data for cost-effectiveness analysis

3. Nested Cohort Study (COVA)
 • **Objective**: Assess individual level impacts on maternal and child nutrition
 • **Design**: Longitudinal study, 505 women from pregnancy to 9 months postpartum; Multipass 24 hour recalls conducted on 206 mother-infant dyads at 8-10 months postpartum. Intervention effects assessed with two level mixed effects organizational models or three level mixed effects growth models adjusted for clustering, repeated measures and relevant covariates
1. Purposive selection and random allocation of health facilities
 • 4 intervention, 4 comparison facilities in Bungoma and Busia counties
2. Cross sectional baseline and endline surveys
 • **Objective**: Assess community level impact on diets and child nutrition
 • **Design**: 2 stage cluster randomized baseline / endline surveys in Mar-May 2011 and Mar-May 2014; Detailed costing data for cost-effectiveness analysis
3. Nested Cohort Study (COVA)
 • **Objective**: Assess individual level impacts on maternal and child nutrition
 • **Design**: Longitudinal study, 505 women from pregnancy to 9 months postpartum; Multipass 24 hour recalls conducted on 206 mother-infant dyads at 8-10 months postpartum. Intervention effects assessed with two level mixed effects organizational models or three level mixed effects growth models adjusted for clustering, repeated measures and relevant covariates
<table>
<thead>
<tr>
<th>Data Type</th>
<th>Enrollment (10-24 wk)</th>
<th>Late third trimester</th>
<th>4m post-partum</th>
<th>9m post-partum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socio-demographics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program uptake</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food security; dietary diversity; OFSP consumption</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge of VA / nutrition; OFSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morbidity, health care utilization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropometry</td>
<td>Mothers</td>
<td>Mothers</td>
<td>Mothers&Infants</td>
<td>Mothers&Infants</td>
</tr>
<tr>
<td>Breastmilk retinol and carotenoids</td>
<td></td>
<td></td>
<td>Mothers</td>
<td>Mothers</td>
</tr>
<tr>
<td>Micronutrient status: RBP, ferritin, TfR, CRP and AGP</td>
<td>Mothers</td>
<td>Mothers</td>
<td>Infants</td>
<td>Mothers&Infants</td>
</tr>
<tr>
<td>Anemia</td>
<td>Mothers</td>
<td>mothers</td>
<td>Mothers</td>
<td>Mothers&Infants</td>
</tr>
<tr>
<td>Multi-pass 24 hour recalls (subsample, Table 3)</td>
<td></td>
<td></td>
<td></td>
<td>Mothers&Infants</td>
</tr>
</tbody>
</table>
COVA FINDINGS

1. Sweet Potato (SP) and Orange Flesheed Sweet Potato (OFSP) Production

2. Maternal Nutrition and Health Knowledge
 - Vitamin A / Vitamin A rich foods
 - ANC / delivery care
 - Optimal IYCF practices

3. Maternal Diets
 - Diet Diversity
 - Consumption of VA rich foods
 - VA intakes (subsample)

4. Maternal MUAC, vitamin A status and anemia
At enrollment (n=505):
- 29 intervention and 4 control women reported OFSP production in past year

At 9 months postpartum (n=384):
- 70% of intervention women produced OFSP compared to <5% of controls
- 92.7% of intervention women received vouchers for OFSP vines
 - Mean times received = 2.80 ± 1.2.
 - 13 women did not redeem any vouchers due to season, distance to the DVM or not being able to obtain permission to plant
Table 1: Knowledge and vitamin A index scores increased from enrollment to 9 months postpartum among intervention mothers

<table>
<thead>
<tr>
<th>Index Scores</th>
<th>Control</th>
<th>Intervention</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enrollment</td>
<td>V1-V4</td>
<td>Enrollment</td>
</tr>
<tr>
<td>Total Nutrition and Health Knowledge</td>
<td>3.36±2.18</td>
<td>1.58±2.23</td>
<td>3.96±2.23</td>
</tr>
<tr>
<td>VA knowledge</td>
<td>0.63±1.20</td>
<td>0.13±1.22</td>
<td>2.03±1.39</td>
</tr>
<tr>
<td>IYCF knowledge</td>
<td>2.42±1.28</td>
<td>1.22±1.38</td>
<td>2.34±1.34</td>
</tr>
</tbody>
</table>

*p values estimated for intervention effect adjusted for repeated measures, clustering and baseline values
FINDINGS: GREATER CONSUMPTION OF OFSP

Figure 1: Any OFSP consumption in past 7 days

- Early Pregnancy: 0.4% control, 8.4% intervention
- Late Pregnancy: 1.9% control, 28.7% intervention
- 4 mos postpartum: 0.0% control, 35.7% intervention
- 9 mos postpartum: 5.3% control, 55.7% intervention

Figure 2: Days OFSP consumed

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treatment effect p value</th>
<th>Treatment time p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Any OFSP</td>
<td>0.002</td>
<td>0.09</td>
</tr>
<tr>
<td>2. Days consumed</td>
<td>0.003</td>
<td><0.001</td>
</tr>
</tbody>
</table>
FINDINGS: NO EFFECTS ON OVERALL DIET DIVERSITY

<table>
<thead>
<tr>
<th>P value for outcomes</th>
<th>Treatment effect</th>
<th>Treatment time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. VA rich fruits / veg</td>
<td>0.07</td>
<td>0.21</td>
</tr>
<tr>
<td>4. Diet Diversity Scores</td>
<td>0.61</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Figure 3: Days consumed VA rich FV

Figure 4: Women’s Dietary Diversity Scores

control intervention

Figure 5: Days consumed VA rich FV
Table 2: Intervention mothers’ vitamin A intakes were significantly higher at 8-10 months postpartum (n=206)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Intervention</th>
<th>P value(^2)</th>
<th>Adjusted RR (95% CI)(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta carotene, mcg</td>
<td>1420.3 (921.0-2236.4)</td>
<td>1783.1 (1017.0-3582.6)</td>
<td>0.005(^a)</td>
<td>1292.3 (282.5, 2302.2); 0.027</td>
</tr>
<tr>
<td>Retinol, mcg</td>
<td>51.2 (40.4-68.4)</td>
<td>59.4 (35.9-76.9)</td>
<td>0.311(^a)</td>
<td>16.4 (-8.12, 40.9); 0.264</td>
</tr>
<tr>
<td>Vitamin A, IU</td>
<td>1526.0 (727.1-2588.3)</td>
<td>2298.7 (1006.8-5122.5)</td>
<td><0.001(^a)</td>
<td>5363.8 (1922.3, 8884.9); 0.002</td>
</tr>
<tr>
<td>Vitamin A, RAE</td>
<td>180.8 (135.2-248.1)</td>
<td>238.5 (156.2-379.5)</td>
<td><0.001(^a)</td>
<td>234.0 (37.5, 430.5); 0.017</td>
</tr>
<tr>
<td>Energy, kcal</td>
<td>2539.8 (2168.4-2894.1)</td>
<td>2585.5 (2122.0-3022.3)</td>
<td>0.667</td>
<td>33.7 (-148.2; 215.7); 0747</td>
</tr>
</tbody>
</table>

\(^a\) Denotes statistically significant difference (p<0.05)
FINDINGS: LIMITED IMPACTS ON MATERNAL NUTRITIONAL STATUS

Figure 5: Maternal MUAC

Figure 6: Maternal hemoglobin

Figure 7: Maternal RBP

P values for outcomes	Treatment effect	Treatment time
5. MUAC | <0.001 | 0.08
6. Hemoglobin | 0.20 | 0.54
7. RBP | 0.79 | 0.08
FINDINGS: LIMITED IMPACTS ON MATERNAL NUTRITIONAL STATUS

Figure 8. MUAC < 22cm, %

Figure 9. Anemia, %

Figure 10. RBP < 1.17, %

<table>
<thead>
<tr>
<th>P value for outcomes</th>
<th>Treatment Effect</th>
<th>Treatment time</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. MUAC < 22</td>
<td>0.01</td>
<td>0.46</td>
</tr>
<tr>
<td>9. Anemia</td>
<td>0.20</td>
<td>0.97</td>
</tr>
<tr>
<td>10. Low RBP</td>
<td>0.77</td>
<td>0.20</td>
</tr>
</tbody>
</table>
CONCLUSIONS

A nutrition and health linkages program that promoted OFSP and provided enhanced nutrition education was associated with:

- Greater OFSP production
- Greater improvements in VA knowledge among mothers
- Greater VA intakes among women
- Borderline improvements in maternal vitamin A status and anemia in pregnancy
ONGOING & PLANNED

- Analysis of data from broader evaluation strategy to identify impacts on child nutritional status
- Quantify breastmilk retinol and beta-carotene and identify pathways from maternal intakes to infant status
- Apply structural equation modeling to quantify pathways of effect
- Finalize cost-effectiveness analyses
Thank you from the Mama SASHA Team

Donald Cole, MD, MPH | University of Toronto
Frederick Grant, PhD | International Potato Center
Ellah Kedera | PATH | Emory University
Carol Levin, PhD | PATH & University of Washington
Jan Low, PhD | International Potato Center
Haile Selassie Okuku, MSc | International Potato Center
Moses Wamalwa | International Potato Center
Rose Wanjala, MPH | International Potato Center

Cornelia Loechl, PhD | UN-IAEA
Abdelrahman Lubowa, MSc | Consultant
Mary Anyango Oyungo, MSc | KARI, Kenya
Hermann Ouedraogo, PhD | Consultant
Rikka Trangsrud, MPH | PATH, Nairobi
Yvonne Wangu Machira | Consultant
Numerous MPH, MSc and PhD students
Participants, vine multipliers, community health workers and health facility staff
Research assistants, enumerators and support staff
SUPPLEMENTAL SLIDES
STRENGTHS AND CHALLENGES

- Participatory impact pathway clarified theory of change and guided M&E strategy
- Pilot period and integration of lessons learned in PoCP
- Integrated trainings and feedback meetings with health and ag extension
- Operations research suggest activities worthwhile and acceptable to health, agriculture and community actors
- Multilevel modeling strategies produce robust estimates of effect

- Staff turnover and stipend cut demotivated CHWs
- Initial resistance by men / elders Engagement of CHW's
- Low attendance at mothers clubs
- Integrated trainings of health and ag extension
- Small number of clusters introduces analytical bias but mitigated with repeated measures
PoCP West Kenya

Area

Outputs

Next Users

End Users

Outcomes

End Users

End Users

Impact

Health and Nutrition

- Health facility staff trained in nutrition and counseling on VA and OFSP
- Health facility staff trained in use of vouchers
- IEC counseling cards, leaflet and poster on healthy nutrition developed by FAHSA-Plus and distributed in ANC and among CHWs
- Community health workers trained in good nutrition, increasing contribution of VA and OFSP and in OFSP agronomy
- Community health workers trained in organizing sensitization campaigns on importance of vitamin A and benefits of OFSP
- Community health workers trained in setting up and nursing pregnant women clubs

Facility health workers provide improved counseling for health and nutrition

- Health facility staff accept and use vouchers routinely
- Health facility staff correctly using IEC materials in their work
- CHWs provide improved counseling for health and nutrition
- CHWs encourage women to access OFSP vines, and follow up on planting and provide basic agronomic advice
- Pregnant women clubs providing OFSP operational by CHWs
- CHWs correctly using IEC materials in their work
- Secondary vines multipliers take healthy vines available
- Vines accessed by pregnant women and mothers using vouchers provided by health centers

More pregnant women continuously using antenatal health care

- Pregnant mothers have improved knowledge of vitamin A and benefits of OFSP and want to access vines
- Pregnant women, mothers, and babies increased consumption OFSP and other Vit A rich foods
- Pregnant mothers in PW clubs have improved knowledge of Vitamin A and benefits of OFSP and want to access vines
- More women and under tens with adequate Vit A status

More pregnant women and lactating mothers with adequate nutrition

- More pregnant women and lactating mothers with adequate nutrition
- More with adequate weight gain during pregnancy
- Reduced prevalence of underweight (weight for age) and stunting (height for age) of under tens

Seed Distribution

- Secondary vine multipliers trained in quality multiplication and voucher system
- Agricultural extension agents and secondary vine multipliers trained to provide extension in OFSP production
- IEC calendar and booklet about OFSP agronomy

Farm Practices

- Extension workers and vine multipliers provide advice on OFSP production
- OFSP demonstration plots at DSM level

Crosscutting

- Male community leaders trained in awareness at household level about the importance of supporting women in ANC care and improved nutrition with OFSP
- Male leaders stress need to support women on ANC care and improved nutrition with OFSP during community meetings
- Makes household heads encourage wives to attend ANC, provide food and help with planting OFSP

- Network of extension agents, vine multipliers, and health agents
- Improved communication and joint action between stakeholders
- Enhanced sustainability and improved cost-effectiveness of intervention

- Feedback meetings of stakeholders from health and agriculture sectors
- Field days to demonstrate OFSP production and nutrition benefits

Vers. 13 Oct 2011
Characteristics of Mothers at Enrollment

<table>
<thead>
<tr>
<th>Socio Demographic Variables</th>
<th>Overall (n=505)</th>
<th>Intervention (n= 251)</th>
<th>Control (n= 254)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age, years</td>
<td>24.3 ± 5.5</td>
<td>24.1 ± 5.5</td>
<td>24.6 ± 5.5</td>
<td>0.326</td>
</tr>
<tr>
<td>Gestational age in weeks at enrollment</td>
<td>20.4 ± 5.1</td>
<td>20.5 ± 5.5</td>
<td>20.4 ± 4.7</td>
<td>0.717</td>
</tr>
<tr>
<td>Head of Household is Husband / Partner</td>
<td>432 (85.5%)</td>
<td>205(82.0%)</td>
<td>227(89.0%)</td>
<td>0.001</td>
</tr>
<tr>
<td>Maternal Education, < Primary</td>
<td>155(30.7%)</td>
<td>68(27.2%)</td>
<td>87(34.1%)</td>
<td>0.251</td>
</tr>
<tr>
<td>Mother is married/ partnered monogamous</td>
<td>399 (79.0%)</td>
<td>194 (77.6%)</td>
<td>205 (80.4%)</td>
<td>0.410</td>
</tr>
<tr>
<td>Maternal Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not work remuneratively</td>
<td>200 (39.8%)</td>
<td>120 (48.0%)</td>
<td>80 (31.4%)</td>
<td>0.000</td>
</tr>
<tr>
<td>Agriculture</td>
<td>168 (33.4%)</td>
<td>63 (25.2%)</td>
<td>105 (41.2%)</td>
<td></td>
</tr>
<tr>
<td>Salaried employment</td>
<td>25 (5.0%)</td>
<td>15 (6.0%)</td>
<td>10(3.9%)</td>
<td></td>
</tr>
<tr>
<td>Informal business</td>
<td>54 (10.7%)</td>
<td>17 (6.8%)</td>
<td>37(14.5%)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>56 (11.1%)</td>
<td>34(13.6%)</td>
<td>22(8.6%)</td>
<td></td>
</tr>
<tr>
<td>Head of Household Occupation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not work</td>
<td>68(13.5%)</td>
<td>47 (18.10%)</td>
<td>21 (8.2%)</td>
<td>0.000</td>
</tr>
<tr>
<td>Agriculture</td>
<td>104(18.7%)</td>
<td>31 (12.5%)</td>
<td>63 (24.7%)</td>
<td></td>
</tr>
<tr>
<td>Wealth / Asset Index Score</td>
<td>8.55 ± 1.77</td>
<td>8.54 ± 1.92</td>
<td>8.55 ± 1.62</td>
<td>0.99</td>
</tr>
<tr>
<td>Number of children < 5 y*</td>
<td>1 (0, 1)</td>
<td>1 (0, 1)</td>
<td>1 (0, 2)</td>
<td>0.13</td>
</tr>
</tbody>
</table>

*presented as median (25th, 75th percentiles)
Characteristics of Mothers at Enrollment and Delivery

<table>
<thead>
<tr>
<th>Food Security and Nutrition at Enrollment</th>
<th>Overall</th>
<th>Intervention (n=251)</th>
<th>Control (n=254)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household Food Insecurity Category</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secure / mild</td>
<td>276 (55.1%)</td>
<td>131 (54.1%)</td>
<td>145 (57.8%)</td>
<td>0.2210</td>
</tr>
<tr>
<td>Moderate</td>
<td>102 (20.6%)</td>
<td>58 (24.0%)</td>
<td>44 (17.5%)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>115 (23.3%)</td>
<td>53 (21.1%)</td>
<td>62 (24.7%)</td>
<td></td>
</tr>
<tr>
<td>Maternal RBP, µmol/L*</td>
<td>1.44 ± 0.3</td>
<td>1.42 ± 0.3</td>
<td>1.46 ± 0.3</td>
<td>0.245</td>
</tr>
<tr>
<td>Maternal RBP <1.05 umol/L*</td>
<td>110 (21.8%)</td>
<td>54 (21.7%)</td>
<td>56 (22.0%)</td>
<td>0.104</td>
</tr>
<tr>
<td>Maternal ferritin < 12mg/dL*</td>
<td>114 (22.6%)</td>
<td>63 (25.3%)</td>
<td>51 (20.0%)</td>
<td>0.155</td>
</tr>
<tr>
<td>Maternal Hb < 11.0 g/dL</td>
<td>159 (31.5%)</td>
<td>80 (32.0%)</td>
<td>79 (31.0%)</td>
<td>0.841</td>
</tr>
<tr>
<td>Maternal MUAC, cm (N=505)</td>
<td>26.0 ± 3.0</td>
<td>25.3 ± 2.5</td>
<td>26.8 ± 3.3</td>
<td>0.000</td>
</tr>
<tr>
<td>Birth Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestational age at delivery</td>
<td>39.6 ± 1.12</td>
<td>38.8 ± 3.6</td>
<td>39.2 ± 3.5</td>
<td>0.32</td>
</tr>
<tr>
<td>Infant weight within 1 week of delivery</td>
<td>3.42 ± 0.55</td>
<td>3.39 ± 1.03</td>
<td>3.37 ± 0.86</td>
<td>0.83</td>
</tr>
<tr>
<td>Infant sex, % Female</td>
<td>187 (46.8%)</td>
<td>94 (48.2%)</td>
<td>943 (45.4%)</td>
<td>0.57</td>
</tr>
</tbody>
</table>

*RBP and ferritin adjusted for inflammation using correction factor method; Anemia adjusted for altitude
COVA LOST to FOLLOW UP

- 505 women enrolled
- Retention rates were similar across treatment arms (76% and 77%) but differed across the 8 facilities (63% - 86%)
- Women retained to 9 months (n=384) were more likely to be partnered / married
- No other differences observed