



# DEVELOPMENT OF SWEETPOTATO VARIETIES IN BURKINA FASO

## Somé K., Belem J. and Garane A.





Accra, 25-26<sup>th</sup> February 2013

- Sweetpotato production and utilization is getting increase in Burkina
- These last 10 years the production has evolved from 27000 tons in 2000 to 141000 tons in 2011 representing an increase of more than 400%
- Yields are unstable and varied between 6 and 18 t/ha depending on the year



Evolution of sweetpotato production and yield from 2000 to 2011



- Most sweetpotato materials used are farmers varieties
- There are dominated by those with white fleshed
- Are late maturing (4 to 6 months)
- Small storage root size
- However, resistant to most of virus strains and have good storage ability



Farmer's variety in the Eastern region

| Production constraints      | Frequency | Percentage | Rank |
|-----------------------------|-----------|------------|------|
| Weevil damages              | 29        | 60,4       | 1    |
| Susceptibility to poor soil | 26        | 54,2       | 2    |
| Disease occurrences         | 23        | 47,9       | 3    |
| Lack of reliable market     | 17        | 35,4       | 4    |
| Planting materials          | 12        | 25         | 5    |
| Susceptibility to drought   | 12        | 25         | 5    |
| Storage ability             | 12        | 25         | 5    |
| Unadapted Variety           | 9         | 18,8       | 8    |
| Lack of Processing          | 1         | 2,1        | 9    |
| Bad cooking ability         | 1         | 2,1        | 9    |

#### Major production constraints ranked according to their importance (2010)

| Traits                                     | Frequences | Percentage | Rank |
|--------------------------------------------|------------|------------|------|
| High yield                                 | 35         | 72,9       | 1    |
| Big storage root                           | 33         | 68,8       | 2    |
| Good market appeal                         | 31         | 64,6       | 3    |
| Resistant to weevil                        | 23         | 47,9       | 4    |
| Early maturing                             | 22         | 45,8       | 5    |
| Cooking quality                            | 19         | 39,6       | 6    |
| Numerous storage root                      | 15         | 31,3       | 7    |
| Skin color                                 | 15         | 31,3       | 8    |
| Tolerance to drought                       | 11         | 22,9       | 9    |
| Non sweet storage root                     | 13         | 27,1       | 10   |
| Orange flesh storage root                  | 7          | 14,6       | 11   |
| Good taste                                 | 7          | 14,6       | 11   |
| Hard storage root (high DM)                | 2          | 4,2        | 13   |
| Processing                                 | 2          | 4,2        | 13   |
| Good presentation (not too big with smooth | 2          | 4,2        | 13   |
| skin)                                      |            |            |      |
| Storage ability                            | 2          | 4,2        | 13   |

#### Desired traits identified and rankend by farmers

# **Breeding objectives**

To develop high yielding sweetpotato with high beta-carotene content as a contribution to food security and with the potential to alleviate malnutrition in Burkina Faso.

Specifically, to:

- develop high yielding varieties with wide to specific adaptation to the local agro-ecological contexts
- Select varieties with high nutritional values (OFSP, with regard to the DM content)
- Ensure that developed varieties met farmers and consumers expectations

# STRATEGIES ADOPTED

- Variety development through controlled crossed of divergent parents
- Seed germination and vine multiplication
- On station evaluations in 2 years and 3 different agroecological zones
- On farm evaluation in collaborative with CRS, HKI and FDC in numerous other zones

# Major results

- Parental combinations to obtain better yield, high betacarotene, good dry matter content known
  - ▶ BF59 and BF77 crossed well with Tainung to give good yield
  - BF82 cross well with CIP-199062-1 and TIB-440060 to give F1 with orange flesh

• Promising varieties identified for further evaluation with farmers identified

| Genotypes       | Root yield | Upgr      | <b>B</b> -carotene | Virus2 | DM%   | Irwgt  |
|-----------------|------------|-----------|--------------------|--------|-------|--------|
|                 | (t/ha)     | BiomYield | (mg/100g of        |        |       |        |
|                 |            | (t/ha)    | fresh weight)      |        |       |        |
| BF82xTainung-8  | 20.33      | 16.33     | 0.48               | 2.33   | 23.2  | 179.15 |
| BF82xTainung-20 | 19.67      | 17.23     | 0.78               | 3.33   | 21.82 | 242.68 |
| BF82xCIP-17     | 18.56      | 14.78     | 3.92               | 1.17   | 28.45 | 118.18 |
| BF80xTainung-2  | 18.11      | 11.89     | 2                  | 2.33   | 19.27 | 203.89 |
| BF82xTainung-24 | 17.83      | 25.89     | 8.29               | 1      | 21.79 | 136.43 |
| BF92xCIP-6      | 17.11      | 17.83     | 6.44               | 1.83   | 26.61 | 175.9  |
| BF59xCIP-4      | 16.78      | 21.56     | 8.32               | 1.83   | 24.81 | 116.15 |
| BF24xTIB-3      | 16.17      | 17.28     | 7.66               | 2.67   | 27.33 | 116.72 |
| BF59xTIB-6      | 15.22      | 11.39     | 4.36               | 2.33   | 21.48 | 275.94 |
| BF82xCIP-18     | 15.22      | 30.11     | 2.32               | 1.5    | 22.81 | 186.07 |
| BF59xCIP-1      | 13.56      | 18.33     | 8.32               | 1.17   | 27.09 | 110.82 |
| BF82xTIB-4      | 13.5       | 10.33     | 1.03               | 2.17   | 30.06 | 145.36 |

#### The Best twelve $F_1$ genotypes that had significantly higher yield than the best check



### BF82xTainung-8 (20.33 t/ha)

### BF82xTainung-24 (17.83 t/ha)





BF59xTainung-5 (54.66 t/ha) – White flesh

The four F<sub>1</sub> genotypes that had significantly higher beta-carotene than the best check (BF14 with 8.35)

|                  |                                                                   |                                                                                                                              |                                                                                                                                                                   | 0                                                                                                                                   |
|------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                  | caroter                                                           | ne                                                                                                                           |                                                                                                                                                                   |                                                                                                                                     |
|                  | (mg/10                                                            | 0 g                                                                                                                          |                                                                                                                                                                   |                                                                                                                                     |
|                  | fw)                                                               |                                                                                                                              |                                                                                                                                                                   |                                                                                                                                     |
| 78 11            | 10.85                                                             | 2.67                                                                                                                         | 25.71                                                                                                                                                             | 105.23                                                                                                                              |
|                  |                                                                   |                                                                                                                              |                                                                                                                                                                   |                                                                                                                                     |
| 89 12            | 9.96                                                              | 1.33                                                                                                                         | 30.86                                                                                                                                                             | 59.42                                                                                                                               |
|                  |                                                                   |                                                                                                                              |                                                                                                                                                                   |                                                                                                                                     |
| 56 13.1          | <b>9.57</b>                                                       | 1.67                                                                                                                         | 22.54                                                                                                                                                             | 101.08                                                                                                                              |
|                  |                                                                   |                                                                                                                              |                                                                                                                                                                   |                                                                                                                                     |
| .45 15.          | 5 <b>9.41</b>                                                     | 2                                                                                                                            | 31.61                                                                                                                                                             | 170.54                                                                                                                              |
|                  |                                                                   |                                                                                                                              |                                                                                                                                                                   |                                                                                                                                     |
| igher bet-carote | ne genotypes have                                                 | small yield                                                                                                                  |                                                                                                                                                                   |                                                                                                                                     |
|                  | eld d<br>78 11<br>89 12<br>56 13.1<br>.45 15.<br>igher bet-carote | eld d caroter (mg/100 fw)   fw) fw)   78 11   89 12 9.96   56 13.17 9.57   .45 15.5 9.41   igher bet-carotene genotypes have | eld d carotene<br>(mg/100 g   fw) fw)   78 11 10.85 2.67   89 12 9.96 1.33   56 13.17 9.57 1.67   .45 15.5 9.41 2   igher bet-carotene genotypes have small yield | eld d carotene<br>(mg/100 g   fw) 78 11 10.85 2.67 25.71   89 12 9.96 1.33 30.86   56 13.17 9.57 1.67 22.54   .45 15.5 9.41 2 31.61 |

| Genotypes       | Root yield | BiomYield | <b>B</b> -carotene | Virus2 | DM%   | Irwgt  |
|-----------------|------------|-----------|--------------------|--------|-------|--------|
| BF82xTainung-11 | 7.78       | 13.11     | 0.87               | 1.67   | 32.15 | 109.6  |
| BF92xTIB-2      | 10.45      | 15.5      | 9.41               | 2      | 31.61 | 170.54 |
| BF82xCIP-13     | 9.89       | 12        | 9.96               | 1.33   | 30.86 | 59.42  |
| BF82xTIB-4      | 13.5       | 10.33     | 1.03               | 2.17   | 30.06 | 145.36 |
| BF82xTIB-9      | 12.5       | 15.06     | 0.63               | 2.17   | 29.59 | 105.81 |
| BF82xCIP-11     | 11.94      | 11.67     | 4.13               | 1.83   | 28.89 | 104.26 |
| BF59xTIB-4      | 8.33       | 16.67     | 7.01               | 2.17   | 28.81 | 104.31 |
| BF82xCIP-17     | 18.56      | 14.78     | 3.92               | 1.17   | 28.45 | 118.18 |

#### The eight F<sub>1</sub> genotypes that have dry matter content higher than 28%

Have low yield and , When yield acceptable, beta-carotene content low

| Genotypes   | Root<br>yield | BiomYield | <b>B-</b> carotene | Virus2 | DM%   | Irwgt  |
|-------------|---------------|-----------|--------------------|--------|-------|--------|
| BF82xCIP-11 | 11.94         | 11.67     | 4.13               | 1.83   | 28.89 | 104.26 |
| BF82xCIP-17 | 18.56         | 14.78     | 3.92               | 1.17   | 28.45 | 118.18 |

## **Existing OFSP evaluated with farmers**

Well appreciated in the Eastern Region







### Well appreciated in the Central and Southern Regions Region









