SWEETPOTATO GERMPLASM EXCHANGE

Ian Baker, Isaac Macharia

Introduction

Collecting, conservation and utilization of plant genetic resources and their global distribution are essential components of international crop improvement programmes.

However, the movement of germplasm involves a risk of introducing plant quarantine pests along with the host plant material; especially virus diseases.

Importance phytosanitary measures

- Some plant pathogens, pests or weeds are generally distributed in most parts of the world but others are restricted in their occurrence.
- In most cases this limitation is due to:
 - -Unsuitable environmental conditions
 - -Lack of the required host plant
 - -Lack of opportunity to reach certain areas
- There is need to prevent introduction of harmful foreign weeds, pests and diseases.
- In most cases, introduced pest lack natural enemies

Example: Recognized viruses that infect sweetpotato

Genus	Virus	Transmission	Distribution
Potyvirus 🤇	SPFMV	Aphid <	Worldwide
-	SPLV	Aphid	Taiwan, China, Japan, Indonesia, Philippines, India, Egypt
	SPMSV	Aphid	Argentina, Peru, Indonesia, Philippines, China, Egypt, South Africa, Nigeria, New Zealand
\langle	SPVG	Aphid	China, Japan, USA, Egypt, Ethiopia, Nigeria, Barbados, Peru, Spain, South Africa
<	SPV2	Aphid	USA, Taiwan, China, South Africa, Portugal, Australia, Barbados
	SPCSV?	Unknown	Caribbean Region, Zimbabwe, Uganda, Kenya
	SPVMV	Aphid	Argentina
Ipomovirus 🤇	SPMMV	Whitefly?	Africa, Indonesia, China, PNG, India, Egypt, New Zealand
	SPYDV	Whitefly	Taiwan, Far East
Crinivirus 🤇	SPCSV	Whitefly	Worldwide
Cucumovirus	CMV	Aphid	Israel, Egypt, Kenya, South Africa, Japan, New Zealand
Begomovirus	SPLCV	Whitefly	Far East, USA, China, Taiwan, Japan, Korea, Europe, Africa?, Peru
	SPLCGV	Whitefly	USA, Puerto Rico
	ΙΥνν	Whitefly	Spain, Italy
	ICLCV	Whitefly	Israel
Carlavirus 🤇	SPCFV	Unknown	Africa, China, Taiwan, North Korea, Cuba, Panama, South Americaa, N. Zealand
	C-6?	Unknown	USA, Peru, Cuba, Dom. Rep., Indonesia, Philippines, P. Rico, Egypt, Kenya, South Africa, New Zealand
Nepovirus	SPRSV	Unknown	Papua New Guinea, Kenya?
Caulimovirus	SPCaLV	Unknown	South Pacific Region, Madeira, China, Egypt, P. Rico, Nigeria, Kenya?
llarvirus	TSV	Unknown	Guatemala
Polerovirus	SPLSV	Aphid	Peru, Cuba
Tobamovirus	ΤΜV	None	USA
Unknown	C-3	Unknown	Brazil. Unknown in others countries
	C-9	Unknown	? Courtesy: Segundo, CIP

Germplasm exchange

There are several initiative that have been put in place to facilitate safe movement of germplasm

FAO/IBPGR has developed a technical guidelines for the safe movement of sweet potato germplasm

Cont?

IPPC has developed ISPMs that are important in movement germplasm

- ISPM 1 Phytosanitary principles for the protection of plants and the application of phytosanitary measures in international trade
- ISPM 2 & 11 (PRA)
- ISPM 33 (Pest free potato (*solanum* spp.) Micropropagative material and minitubers for international trade)
- ISPM 34 (Design and operation of post-entry quarantine stations for plants)

Movement of sweet potato germplasm

- In order to minimize risk, effective testing (indexing) procedures are required to ensure that distributed materials are free of pests of quarantine concern.
- All germplasm should be tested for the absence of viruses in
 - the country of origin,
 - in an intermediate quarantine centre, or
 - in post-entry quarantine

Role of KEPHIS is supporting Germplasm exchange

- Preventing the introduction of harmful foreign pests, diseases and weeds
- Grading and inspection of agricultural produce
- Certification of the quality of seeds, fertilisers and monitoring of agrochemical residue levels
- Offering advisory services on pest/disease management
- Plant variety protection

Plant Import Categories

- Plant import regulations in Kenya fall into three broad categories.
 - 1. Imports under permit-Low risk materials
 - 2. Imports through quarantine -Plant materials with high risk of transmitting pests including latent infection e.g viruses (Clonally propagated, seed)
 - Open quarantine
 - Closed quarantine (Sweep potato, Irish potato, cassava etc)
 - 3. Prohibited materials e.g. Tea

- Most of the sweet potato activities are undertaken at the station.
- Clean SP germplasm are received from
 - **CIP** as tissue culture or seeds
- Several SP varieties are received from the region for cleaning

Reference Laboratory for COMESA

- PQS has been designated as a Regional Reference Laboratory for COMESA for Plant Health.
- Proposed function will include:
 - Monitoring compliance with regional and international disease and pest control
 - Overseeing the appropriate certification process and providing testing services

Cont?

- Standardizing and Validating diagnostic procedures and reagents on behalf of satellite and national laboratories;
- Build capacity in conducting risk analysis on relevant matters of SPS;
- Training of personnel from laboratories of member states;
- Operating inter-laboratory comparison schemes

The station has supported movement of germsplasm with the region.

There are:-

- Greenhouses and screenhouses for holding imported quarantine material
- Equipped pathology and virology laboratories for disease indexing
- A tissue culture laboratory for virus clean up and multiplication

Importation of SP

Sweet potato is imported under quarantine regulation

- 1. Import permit with a Q label is issued
- 2. Imported material is accompanied by a phytosanitary certificate from importing country
- 3. Material is inspection at entry points
- 4. Plants are held in quarantine facility (OQ, CQ)
- 5. Material are multiplied in tissue culture or established in greenhouse (cutting)
- 6. Plants are tested for Bacteria and viruses
- 7. Infected material are cleaned through thermotherapy and meritem culture

Thermotherapy (34-36°C for 1 month)

Growth chamber

Virus indexing

Cleaned plant are first indexed for viruses through: Grafting in I. setosa **NCM ELISA** PCR

Diagnostic equipments

Realtime PCR

Growing plantlets in a greenhouse

Current Virology and tissue laboratory

Dr. Wilson Songa, Agriculture Secretary

Laying the foundation stone of the new laboratory at Plant Quarantine Station

- There is need to developed harmonized regulation for germplasm exchange within the region.
- There is need to offer training in virus indexing and cleaning within the region.
- Facility for mass production in region need to be enhanced and established where they do not occur

PROGRESS AND FUTURE PLAN

Proposed SASHA Investment in PQS

- 1. Renovation of sweet potato screenhouses
- 2. Renovation of soil sterilisation
- 3. Renovation of growth room
- 4. Construct one quarantine greenhouse
- 5. Training in virus indexing and PCR (Segundo)
- 6. Introduction of bar coding system for gene bank

Old screenhouse

Small quarantine greenhouse

Progress so far

- Introduction of tissue culture, cleaned and virus indexed (11 varieties) sweet potato to Tanzania
- Training of ISAR, Rubona staff in Virus indexing and cleaning
- Cleaning and indexing of Mozambique materials (67 clone in progress)
- Recruitment of tissue culture technician (Rosemary)

Plantlets for hardening

Transferred to Hardening shade

Ukerewe – Primary multiplication beds

Ejumula – Primary multiplication beds

Progress of multiplication in Bukoba

Variety	When	No. of	Total no. of	Estimated
	delivered	delivered	beds	cuttings
Ejumula	Dec 2009	74	9	30,500
Ukerewe	Feb 2010	200+10,341	37	54,500
Polista	Feb 2010	104+9,694	34	51,000
Jewel	May 2010	1,500	June	
Simama	May 2010	100	June	
Derther	May 2010	70	June	
Car Dar	May 2010	50	June	
SPK2001/261	May 2010	100	June	
SPK2001/264	May 2010	64	June	
Ejumula	May 2010	10,000	June	
Kabode				

Development of new diagnostic methods

Partners

- 🛚 CIP-Lima
- 🛚 FERA, UK
- 🛚 Mikocheni, Tanzania
- **KEPHIS-PQS**
- 🛚 (BECA)

Methods

- Sweet potato virus microarray
- Sweet potato virus lateral device
- High through put sequencing
- Cryotherapy (Cold treatment)

Clean material in Maruku, Bukoba Tanzania

