The Sweetpotato Action for Security and Health in Africa (SASHA) is a five-year initiative designed to improve the food security and livelihoods of poor families in Sub-Saharan Africa by exploiting the untapped potential of sweetpotato. It will develop the essential capacities, products, and methods to reposition sweetpotato in food economies of Sub-Saharan African countries to alleviate poverty and undernutrition.

Effect of Natural Virus Infection on Sweetpotato Cultivar Decline in Uganda

Scovia Adikini
Background

• SPVD remains a threat to sweet potato production in Uganda

• Effects of single infection of virus e.g. SPFMV are contradictory both no loss and reduced yield reported

• Lack of proper seed systems in sweet potato leads to viral accumulation

 ➢ Some cultivar decline over the years after release

 ➢ Land races & some station bred varieties may/ may not decline, while others may revert to health when infected

 thus contradictory evidence for and against viral degeneration being important in Uganda
background

- Use of root sprouts in drought prone areas is being promoted but virus epidemiology in the root tubers of Ugandan Cvs. is not yet understood.

- This work seeks to:
 - establish the effect of sweetpotato virus (SPFMV) on yield loss, rate of vine degeneration,
 - epidemiology of the virus in root system
 - developing a method for rapid propagation of virus-free planting material for high value sweetpotato varieties.

Field selection of SP vine
Research progress: Generation of virus tested planting materials from field sweetpotato vines

- Symptomless cuttings of Cvs. Kabode, Dimbuka, Naspot1 and Ejumula, from Namulonge field, were grafted on *I. setosa*
- Healthy scions were further multiplied in screen house
- Others were initiated in tissue culture in kabanyolo

Table 1: Summary of symptomless sweetpotato cuttings obtained from fields at Namulonge and grafted on *I. setosa* to detect the presence of virus

<table>
<thead>
<tr>
<th>cultivar</th>
<th>Number of cuttings grafted</th>
<th>percentage of symptom cuttings</th>
<th>percentage of symptomless cuttings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kabode</td>
<td>94</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>Dimbuka</td>
<td>79</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>NASPOT1</td>
<td>81</td>
<td>23</td>
<td>77</td>
</tr>
<tr>
<td>Ejumula</td>
<td>31</td>
<td>93</td>
<td>7</td>
</tr>
</tbody>
</table>
Re-infection and degeneration of sweetpotato cultivars in Central and Eastern Uganda.

- Healthy cvs. Naspot1, Beuregard, Ejumula and Dimbuka were planted at MUARIK and NASARRI in CRBD
- Data collection including incidence severity whitefly number and aphid number is on going
- Data on yield will be taken at the end of
Effects of SPFMV on the yield of sweetpotato in Uganda

Cvs. Naspot1, Beauregard, Enjumula, Dimbuka and Kabode were used

Healthy cuttings of these cvs. were graft inoculated with SPFMV and multiplied in screen house at Namulonge

SPFMV infected + healthy cuttings were planted at MUARIK and NASARRI

Data collected on incidence and severity of SPVD

Yield data will be taken at the end of the trial

Field planted with SPFMV + healthy control at kabanyolo
NCM ELISA TEST

SPFMV infected samples

SPCSVV infected samples
Other activities to be achieved

1. To evaluate the potential of using root sprouts to generate virus free planting materials. As part of this, to:

 - compare the rate of viral reinfection and symptom development on cuttings obtained from root tubers and those obtained from mature crops
 - evaluate the efficiency of sweet potato virus transmission from infected foliage to tubers and from infected tubers to progeny plants

2. To evaluate the potential of using hydroponics and optimize the protocol for rapid multiplication of virus free sweetpotato clean planting material in Uganda