Sweetpotato Postharvest Assessment

Experiences from East Africa
Sweetpotato Post-Harvest Assessment

Experiences from Tanzania

Edited by
Debbie Rees, Quirien van Oirschot
and Regina Kapinga
The Natural Resources Institute (NRI) of the University of Greenwich is an internationally recognized centre of expertise in research and consultancy in the environment and natural resources sector. The Institute carries out research and development and training to promote efficient management and use of renewable natural resources in support of sustainable livelihoods.

Short extracts of this publication may be reproduced in any non-advertising, non-profit-making context provided that the source is acknowledged as follows:

Permission for commercial reproduction should be sought from the Managing Editor, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom.

Production of this publication was funded by the United Kingdom Department for International Development (DFID). The views expressed are not necessarily those of DFID.

Copies of this book can be obtained by writing to ITDG Publishing, 103–105 Southampton Row, London, WC1B 4HL, UK. When ordering, please quote **CRP15**.
CONTENTS

Contributors and collaborating institutes vi

Introduction 1

Chapter 1. Present status of sweetpotato breeding for eastern and southern Africa 3
R.E Kapinga and E.E. Carey

1.1 The status of sweetpotato as a staple crop 3
1.2 The main constraints to the crop in eastern and southern Africa 4
1.3 Previous breeding efforts in eastern and southern Africa 5
1.4 Current breeding approaches and results 5
1.5 Current areas of focus for regional breeding efforts 6
References 7

Chapter 2. Farmer criteria for selection of sweetpotato varieties 9
R.E Kapinga, S.C. Jeremiah, E.J. Rwiza and D. Rees

2.1 Background 9
2.2 Surveys for the identification of farmers’ selection criteria for sweetpotato varieties 10
 2.2.1 Methods 10
 2.2.2 Results 10
2.3 The use of farmer groups and on-farm cultivar testing 15
 2.3.1 Background 15
 2.3.2 Procedure for conducting on-farm assessment of sweetpotato varieties 16
 2.3.3 Procedure for conducting taste tests 19
2.4 Conclusions and implications 21
References 21

Chapter 3. Trader and consumer criteria for selection of sweetpotato varieties 23
R.E Kapinga, D. Rees, S.C. Jeremiah and E.J. Rwiza

3.1 Background 23
3.2 Methods 24
 3.2.1 Areas surveyed and selection of interviewees 24
 3.2.2 Data collection 25
3.3 Results and discussion 29
 3.3.1 Selection for suitability for local processing methods 29
 3.3.2 Selection criteria of sweetpotato varieties as identified by urban consumers 31
 3.3.3 Selection criteria of sweetpotato varieties as identified by sweetpotato traders 33
3.4 Conclusions and implications 35
References 35

Chapter 4. The use of consumer tests and trained taste panels to assess sensory characteristics 37
K.I. Tomlins, E.J. Rwiza, T. Ndengello, R. Amour, R.E. Kapinga and D. Rees

4.1 Background 37
4.2 Methods 38
 4.2.1 Ranking consumer acceptability of locally available varieties 38
 4.2.2 Training of on-station taste panels and obtaining sensory profiles of local cultivars 40
 4.2.3 Obtaining profiles of elite cultivars within the breeding programme 42
4.3 Results and discussion 42
 4.3.1 Consumer tests on local varieties in Mwanza, Meatu and Misungwi 42
 4.3.2 Testing the consistency and sensitivity of the trained taste panel 43
4.3.3 Obtaining sensory profiles of the varieties from Mwanza, Meatu and Misungwi 43
4.3.4 Profiles of elite cultivars within the breeding programme 43
4.3.5 Advanced techniques for assessing cultivar acceptability over seasons 46

4.4 Conclusions and implications 48
References 48

Chapter 5. Extending root shelf-life during marketing by cultivar selection 51

5.1 Introduction 51
5.1.1 The constraints imposed on sweetpotato marketing by short shelf-life 51
5.1.2 The effect of mechanical damage on root shelf-life 52
5.1.3 Shelf-life vs. long-term storability 52
5.1.4 Objectives 52

5.2 Methods 52
5.2.1 Assessing deterioration of roots in markets of Tanzania 52
5.2.2 Storage trials to compare the shelf-life of a range of cultivars under simulated marketing conditions 52
5.2.3 Field trials to assess stability of germplasm across environments 55
5.2.4 Measurement of respiration rates 55
5.2.5 Measurement of water loss through wounds using a porometer 56
5.2.6 Assessing cultivars for susceptibility to damage 57

5.3 Results and discussion 57
5.3.1 The main forms of deterioration in sweetpotato storage roots under East African marketing conditions 57
5.3.2 Cultivar differences in keeping quality (weight loss and rotting) under simulated marketing conditions 60
5.3.3 Water loss is the main driving force for deterioration under marketing conditions 62
5.3.4 Stability of cultivars between years and between environments 62
5.3.5 Most water loss occurs through wounds 62
5.3.6 Cultivar variation in susceptibility to damage 64

5.4 Conclusions and implications 65
References 65

Chapter 6. Curing and the physiology of wound healing 67

6.1 Introduction 67
6.1.1 The nature of wound healing 67
6.1.2 Conditions that promote wound healing 68
6.1.3 Objectives 68

6.2 Methods 68

6.3 Results and discussion 72
6.3.1 Physiology of wound healing at sub-optimal humidities 72
6.3.2 Continuity and depth of the lignified layer as an indication of wound healing efficiency 75
6.3.3 Lignification index as a measure of wound healing efficiency 75
6.3.4 Screening of sweetpotato germplasm using the lignification index 80

6.4 Conclusions and implications 83
References 84

Chapter 7. Improving long-term storage under tropical conditions: role of cultivar selection 85
D. Rees, Q.E.A. van Oirschot, L.B. Mbilinyi, M. Muhanna and K.I. Tomlins

7.1 Introduction 85
7.1.1 The potential for long-term storage under tropical conditions 85
7.1.2 Root characteristics desirable for long-term storage 86
7.1.3 Objectives 86

7.2 Methods 86
7.2.1 Laboratory trials to test cultivar reaction to storage environment 86
7.2.2 Trials conducted to assess sweetpotato cultivars for susceptibility to rots (*Rhizopus oryzae*)
7.2.3 Assaying for antifungal compounds by testing growth of pathogens on agar produced from sweetpotato extract
7.2.4 Laboratory trials to assess respiration rates

7.3 Results and discussion
7.3.1 Cultivar differences in keeping qualities under long-term storage conditions
7.3.2 Susceptibility of sweetpotato cultivars to roting
7.3.3 Tissue defence mechanisms against roting
7.3.4 The physiological basis for differences in sweetpotato cultivars in susceptibility to roting
7.3.5 Assessment of cultivar respiration rates
7.3.6 Assessment of cultivar susceptibility to switch to anaerobic respiration

7.4 Conclusions and implications

References

Chapter 8. Damage to storage roots by insect pests

8.1 Background
8.1.1 Sweetpotato weevils (*Cylas* spp.)
8.1.2 Selecting cultivars for resistance/tolerance to root insect infestation

8.2 Methods
8.2.1 Assessment of storage root damage by *Cylas* spp.
8.2.2 Non-destructive damage scoring
8.2.3 Measurement of percentage infested portion of roots by cutting
8.2.4 Comparison of the two methods of measurement
8.2.5 Assessment of storage root damage by other insect pests

8.3 Results and discussion

8.4 Conclusions and implications

References

Chapter 9. Assessment of sweetpotato cultivars for suitability for different forms of processing
C. Owori and A. Agona

9.1 Introduction
9.1.1 Traditional processing
9.1.2 Commercial processing
9.1.3 Objectives

9.2 Methods
9.2.1 Assessing cultivars for cooking quality
9.2.2 Assessing cultivars for crisp production
9.2.3 Assessing cultivars for dried chip processing and subsequent susceptibility to insect infestation
9.2.4 Assessing cultivars for flour processing (low browning)

9.3 Results
9.3.1 Cultivar cooking qualities
9.3.2 Cultivar suitability for crisp production
9.3.3 Cultivar suitability for dried chip processing in terms of resistance to insect infestation
9.3.4 Variation in root browning among cultivars

References

Appendix I. Sweetpotato breeding methodologies and targets in sub-Saharan Africa
R.E. Kapinga and E.E. Carey

Appendix II. Measurement of dry matter content
D. Rees

Abbreviations
Natural Resources Institute
University of Greenwich at Medway, Central Avenue
Chatham Maritime, Kent ME4 4TB, UK
Tel. +44 1634 880088, Fax +44 1634 883567
D. Jeffries1
C. Lucas
D. Rees (D.Rees@gre.ac.uk)
T.E. Stathers (T.E.Stathers@gre.ac.uk)
K.I. Tomlins (K.I.Tomlins@gre.ac.uk)
Q.E.A. van Oirschot (Q.vanOirschot@gre.ac.uk)

International Potato Center
Regional Office, P.O.B 22274, Kampala, Uganda
R.E. Kapinga (R.Kapinga@cgiar.org)
Dr N. Smit2
Regional Office, P.O.B 25171, Nairobi, Kenya.
E.E. Carey3
D. Maina4
T. Mcharo5

Silsoe College
Cranfield University, Silsoe, Bedford MK45 4DT, UK
J. Aked (Julia_Aked@hotmail.com)

LZARDI-Ukiriguru (formerly ARI-Ukiriguru)
P O Box 1433, Mwanza, Tanzania
R. Amour
S.C. Jeremiah
T. Ndengello (Tndengello@hotmail.com)
A. Nyango
E.J. Rwiza

Sugarcane Research Institute (Kibaha)
P O Box 30031, Kibaha Pwani, Tanzania
(sri@twiga.com)
M. Kilima
H. Kiozya
M. Muhanna (Mmuhana@hotmail.com)
K. Munda

HortiTengeru
P O Box 1253, Arusha, Tanzania
M. Chottah (mchottah@yahoo.com)
T. Ndondi

ARTI Uyole
P O Box 400, Mbeya, Tanzania
C.M. Mayona
D. Mende

Dakawa A.R.C.
P O Box 1892, Morogoro, Tanzania
D.N.V. Chilosa

Sokoine University of Agriculture
P O Box 3006, Morogoro, Tanzania
L.B. Mbilinyi

National Agricultural Research Laboratories,
Kenya Agricultural Research Institute, Nairobi, Kenya
A. Kihurani (A.Kihurani@cgiar.org)

Department of Crop Science
Faculty of Agriculture, Makerere University,
Kampala, Uganda
S. Kabi6

US Vegetable Laboratory
USDA-ARS, 2875 Savannah Highway, Charleston,
SC 29414, USA
J. Bohac (AngelOakEy@aol.com)

Kawanda Agricultural Research Institute
P O Box 7065, Kampala, Uganda
A. Agona (karihave@starcom.co.ug)
C. Owori

1 Present contact: david81@totalise.co.uk
 (nicolesmit@zonnet.nl)
3 Present address: Kentucky-State Research and Extension Center – Olathe 35125 W 135th St, Olathe, KS 66061,
 USA.
4 Present address: Kenya Agricultural Research Institute (KARI) – Embu, P O Box 27, Embu, Kenya. (icraf-
 embu@cgiar.org)
5 Present address: Louisian State University, Department of Horticulture, 137 Juliano Miller Hall, Baton Rouge,
 Louisiana 70803 USA (tmcharl@lsu.edu)
6 Present contact: crsgulu@crsuganda.or.ug
The origin and objectives of this publication

This book was produced to summarize work carried out on post-harvest aspects of sweetpotato between 1994 and 2002 within collaborative projects involving the Tanzanian Ministry of Agriculture, the Natural Resources Institute (University of Greenwich, UK) and the International Potato Center, with input from the Kenyan Agricultural Research Institute and the National Agricultural Research Organization of Uganda.

The work arose out of a growing realization that for any crop cultivar to be successful it must not only have good production characteristics but also characteristics that ensure the harvested crop is acceptable/suitable for its intended use. Such characteristics are usually termed post-harvest characteristics. Although this term will be used throughout this book, it is in some ways misleading as the distinction between pre- and post-harvest characteristics is not always clear, and so-called post-harvest characteristics are very dependent on pre-harvest growing practices and conditions.

The selection of new cultivars is an important aspect of sweetpotato crop improvement. Sweetpotato is considered to be the most under-exploited of the developing world’s major crops. This has probably arisen because of its status as a poor man’s crop, and the fact that it is produced almost entirely in developing countries. Breeding initiatives for sweetpotato are at a relatively early stage compared to other staple crops. Given the enormous genetic diversity of sweetpotato worldwide, and the fact that breeding programmes of sweetpotato are relatively new, crop improvements are expected to be rapid. New cultivars can provide farmers with improved yields, earlier crops, reduced susceptibility to pests and diseases, and improved root quality characteristics, at little or no additional cost. Those interested in the selection of new cultivars include agricultural researchers, development and extension workers and, of course, farmers.

The book is focused primarily towards agricultural scientists and breeders anywhere in the world that work with sweetpotato, although it will also be useful for development and extension workers. The hope is that by learning of our experiences and findings through our work in East Africa, others will be helped to develop methods for assessing the quality aspects of sweetpotato cultivars within their own breeding programmes. We also hope that it will be of use to those working with other crops.

Within each chapter, the trials and experiments carried out to investigate a particular aspect of sweetpotato post-harvest quality are described. The relevance of the findings to other regions of the world is discussed. In most cases some details of the methods used are included (although separated from the main text in shaded boxes). Where a reader has a particular interest in a topic more detailed reports and publications listed in the References section at the end of each chapter should be consulted.

Funding for the work reported here was provided by the Department for International Development, UK through their Renewable Natural Resources Knowledge Strategy (RNRKS) programme, and by the International Potato Center. In addition, all other organizations involved donated staff time and use of field or laboratory facilities.