

DETERMINATION OF β-CAROTENE BIOACCESSIBILITY IN ORANGE FLESHED SWEETPOTATOES

GASTON A. TUMUHIMBISE, PhD

DEPARTMENT OF FOOD TECHNOLOGY AND NUTRITION MAKERERE UNIVERSITY

PRESENTATION STRUCTURE

- 1. BACKGROUND
- 2. METHODS
- 3. RESULTS AND DISCUSSION
- 4. CONCLUSION

Background

- Growing interest in OFSP as a source of provitamin A carotenoids
- Levels of β-carotene (BC) in OFSP are enough to alleviate vitamin A deficiency (VAD)
- OFSP have become central in the fight against VAD

Background

- β-carotene is affected by processing conditions e.g heat and light
- Heat treatment causes structural modification of BC
- Processing may enhance the release of carotenoids
- Need for information on processing conditions on bioaccessibility

Back ground

 Bioaccessibility refers to the amount of an ingested nutrient that is available for absorption in the gut after the process of digestion (Hedren, Diaz, & Svernburg, 2002)

 Bioavailability refers to the amount of the nutrient that is absorbed and utilised in the body (Tanumihardjo, 2002)

Illustration of bioaccessibility

 Carotenoid bioaccessibility is influenced by several factors; »Matrix »Presence of fat »Heat treatment/processing »Storage conditions »Fiber co-ingested with carotenoid

Objective

To determine the influence of traditional processing methods on the OFSP microstructure and *in vitro* bioaccessibility of β -carotene

Materials and methods

 Ejumula, SPK004/6/6, SPK004/6, SPK004 and SPK004/1 were obtained from Luweero

• The roots were harvested at 4.5 months

 Chemicals used were procured from BDH (UK) while carotenoid standards were obtained from CaroteNature GmbH (Lupsingen, Switzerland)

Sample preparation:

Boiling: 250g of slices were boiled for 20min at 92 °C

- Steaming: 250g slices steamed in banana leaves for 30min at 94°C
- Deep frying: 200g were immersed in 300ml of preheated oil for 10min at 170 °C

Baking: 200g of slices were baked for 15min at 180 °C

Carotenoids extraction and analysis

- Carotenoids were extracted using acetone and separation of phases was done using PE (40-60°C) and analysed using HPLC (Benggston et al., 2008)
- Carotenoids were calculated on dry matter basis
- Identification was done using aunthentic standards

Determination of *in vitro* bioaccessibility

 The bioaccessibility was determined using an *in- vitro* digestion model (Hedren et al, 2000).

• This method simulates digestion in the gastro-intestinal tract.

 Micellar fraction was separated by centrifugation followed by filtration

Microscopy

- Tissues (6 x 3.4 x 3.4mm) were sectioned from the outer parts of OFSP processed roots
- Fixed in 10% formol saline solution (Rutzin, 1999)
- After processing tissues were dehydrated using a series of alcohol concentration and cleared in xylene
- Sectioning was done using a rotary microtome
- The sections were stained with PAS for 15min and passed through several changes of ethanol
- Slides were examined in light microscope

Data analysis

 Results for *in vitro* bioaccessibility values, β-carotene content were subjected to ANOVA in Stata

 Multiple comparisons of means were done using the Bonferroni method

 Image analysis of micrographs was done using AxioVision Release 4.7 software

Data analysis

 Results for *in vitro* bioaccessibility values, β-carotene content were subjected to ANOVA in Stata

 Multiple comparisons of means were done using the Bonferroni method

 Image analysis of micrographs was done using AxioVision Release 4.7 software

All-*trans*- β -carotene (μ g/g dm) in raw and processed OFSP varieties

Variety	Raw	Boiled	Baked	Steamed	Deep fried
Ejumula	34.77± 10.17ª	106.53± 5.02 ^a	78.32± 8.14 ^a	105.79± 4.4 ^a	150.79± 9.67 ^a
SPK004/6 /6	41.53± 3.51 ^a	70.74± 3.98 ^b	48.03± 5.22 ^b	64.64± 4.87 ^b	101.14± 9.67 ^b
SPK004/6	33.78± 4.38 ^a	69.25± 1.24 ^b	44.35± 2.64 ^c	49.43± 2.67°	58.80± 3.94°
SPK004	18.18± 2.07 ^b	37.18± 3.07°	18.54± 2.51 ^d	25.34± 1.16 ^d	40.54 ± 3.73^{d}
SPK004/1	7.63± 1.08 ^b	18.36± 1.26°	11.46± 1.33 ^e	13.48± 0.94 ^e	19.30± 1.05 ^e

The values are means \pm standard deviation (n = 3). Means in the same column with different superscripts are significantly different at p \leq 0.05

Effect of processing methods on the *in vitro* beta carotene bioaccessibility of OFSP.

Values (percent bioaccessibility) are given as mean \pm SD (n= 3)

Micrographs (a-d) of storage parenchyma tissue of raw OFSP for varieties; ejumula, SPK004/6/6, SPK004 and SPK004/6

Micrographs of processed *ejumula* variety: a (baked), b (boiled), c(steamed), d(deep fried)

- In vitro bioaccessibility varied thus; raw<
 baking< steaming/steaming < deep frying
- Heat processing reduces BC content but increases bioaccessibility
- Presence of fat in diet improves the bioaccessibility of beta carotene
- Heat processing disrupts or softens plant

cells

Tumuhimbise. G.A., Namutebi, A.S., & Muyonga, J.H. (2009). Microstructure and in vitro β-carotene bioaccessibility of heat processed orange fleshed sweet potatoes: *Plant Foods for Human Nutrition*; *64*: 312-318

THANKS FOR YOUR ATTENTION