Selecting the right product for the right target group

Sweetpotato the raw material – what do we know

Agnes Namutebi
Department of Food Technology and Nutrition, Makerere University

8th Sweetpotato Support Platform Meeting for East and Central Africa:

Sweetpotato Post-harvest Management and Agroprocessing

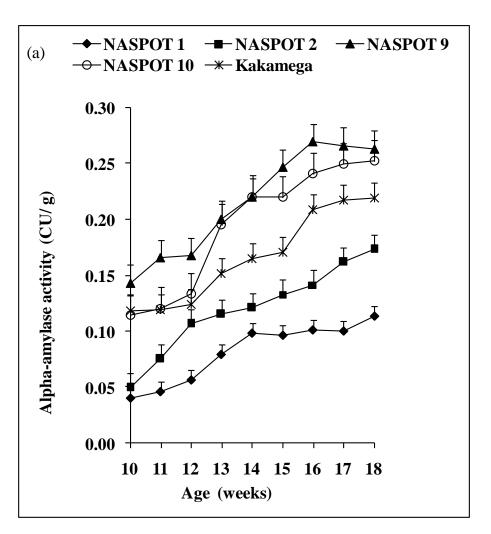
Chez Lando, Kigali, Rwanda. 29-30 January 2014

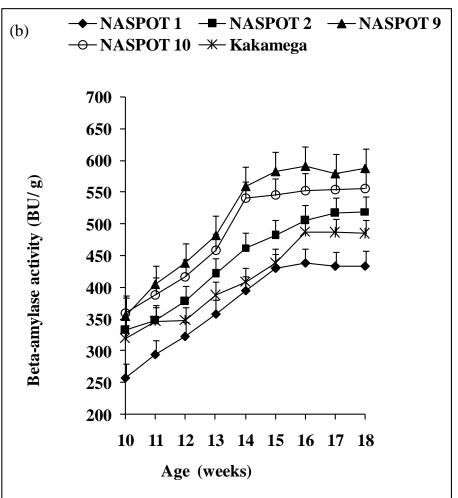
Introduction

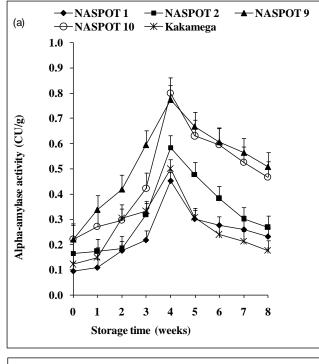
- ☐ Approximate and nutritional composition of sweetpotato
- Endogenous amylases and browning enzymes
- □ Physico-chemical changes in sweetpotato
 - desired and undesired browning
 - ✓ Desired textural changes mashiness/ mealiness

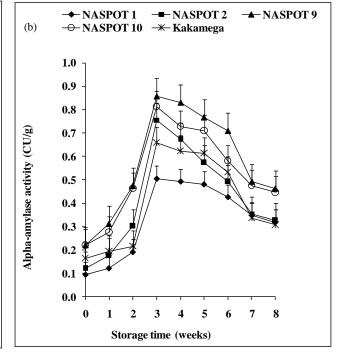
Introduction (cont.)

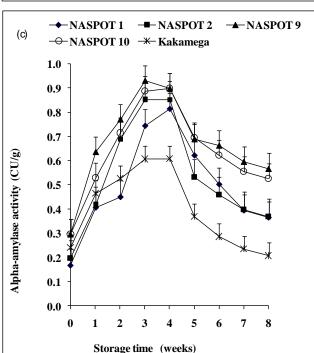
- □ Sweet potato carbohydrate (sugars & starch) changes due to various post harvest processes & conditions
- □ Range of products starch as the main ingredient for confectionary, beverages (fermented & non-fermented), cooked/

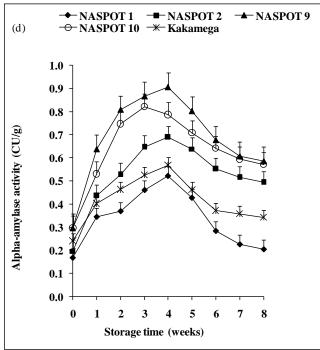

Table 1a. Selected physio-chemical characteristics of sweet potato (Source: Nabubuya et al., 2012)


Variety	Flesh colour	Dry	Starch	Peak viscosity (cP)	Total sugar	Reducing sugar
		matter (%)	content (%)		content (%)	content (%)
Esapat	yellow	39.2	73.9	1,043	8.25	1.1
NASPOT 1	cream	36.2	73.6	2,504	9.31	0.9
Ejumula	deep orange	35.9	68.4	1,648	11.89	1.54
Kakamega (SPK004)	pale orange	34.6	71.7	2,327	10.29	2.3
Soroti	yellow	34.5	72.9	904	10.96	1.42
New Kawogo	white	34.3	69.9	917	16.1	1.68
NASPOT 2	white	32.9	71.8	1,917	8.51	1.21
NASPOT 10 (SPK004/6/6)	orange	32.5	70.3	868	13.59	3.49
NASPOT 9 (SPK004/6)	orange	30.7	69.1	826	10.6	1.27
Dimbuka	pale yellow	30.2	72.8	3,039	6.52	0.73


Table 1b. Selected physio-chemical characteristics of sweet potato (Source: Nabubuya et al., 2012)


Variety Flesh colour		Dry	Starch	Total amylase
		matter (%)	content (%)	content (mg/ ml/ min)
Esapat	yellow	39.2	73.9	0.256
NASPOT 1	cream	36.2	73.6	0.328
Ejumula	deep orange	35.9	68.4	0.57
Kakamega (SPK004)	pale orange	34.6	71.7	0.414
Soroti	yellow	34.5	72.9	0.261
New Kawogo	white	34.3	69.9	0.392
NASPOT 2	white	32.9	71.8	0.416
NASPOT 10 (SPK004/6/6)	orange	32.5	70.3	0.516
NASPOT 9 (SPK004/6)	orange	30.7	69.1	0.569
Dimbuka	pale yellow	30.2	72.8	0.28

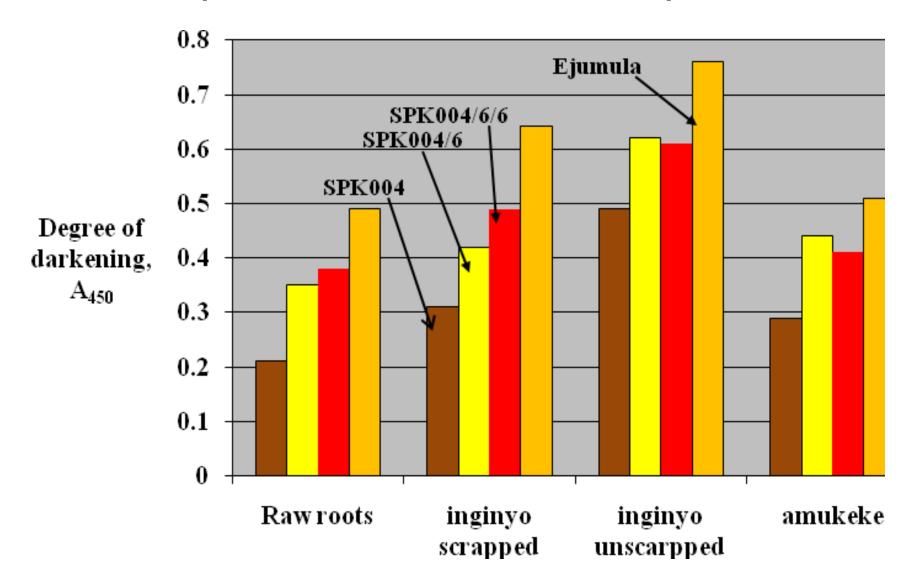

Fig 1. Changes in amylase activity of sweetpotato varieties during development: (a) α-amylase activity, Ceralpha Units per gram (CU/g); (b) β-amylase activity, Betamyl Units per gram (BU/g) (Source: Nabubuya *et al.*, 2012)



amylase activity of sweetpotato varieties subjected to various storage conditions:

- (a) Freshly harvested roots stored under room conditions (23°C 26°C & 70% 80% relative humidity);
- (b) Freshly harvested roots stored in a pit (19°C 21°C & 90% 95% relative humidity);
- (c) Cured roots stored under room conditions (23°C -26°C & 70% - 80% relative humidity);
- (d) Cured roots stored in a pit (19°C - 21°C & 90% - 95% relative humidity)

(Source: Nabubuya et al., 2012)


Table 2. Pro-vitamin A carotenoid content retention (%) of various processed orange-fleshed sweetpotato products (Source: Tadria *et al.*, 2010)

Sweetpotato variety	Steamed	Boiled	^{1a} Inginyo scrapped	^{2a} Inginyo un- scrapped	^{3a} Amukeke
NASPOT 10 (SPK004/6/6)	87.7±0.9	86.9±1.3	38.8±1.6	24.6 ± 0.3	10.3±0.1
NASPOT 9 (SPK004/6)	88.1±1.9	86.9±1.3	36.2±2.4	29.8 ± 1.5	5.3±0.1
Kakamega (SPK004)	73.0±1.0	75.4±1.8	67.4±3.9	47.1 ± 1.6	8.1±1.0
Ejumula	79.5±2.0	75.4± 1.8	42.1±4.5	31.7 ± 6.6	5.3±0.1

a: open-air sun dried products; 1 – Inginyo is dried product from crashing small-sized OFSP roots:

- 2 Modified method for production inginyo by scrapping root skin prior to crashing and subsequent drying;
- 3 Dried sliced product from drying large sized OFSP root

Fig 3. Extent of darkening of dried orange fleshed sweetpotato products (Source: Tadria et al., 2006)

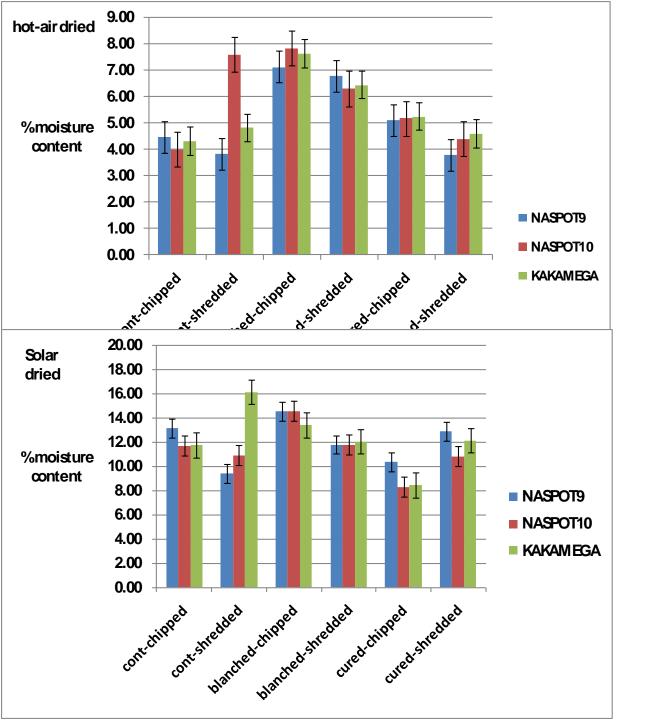
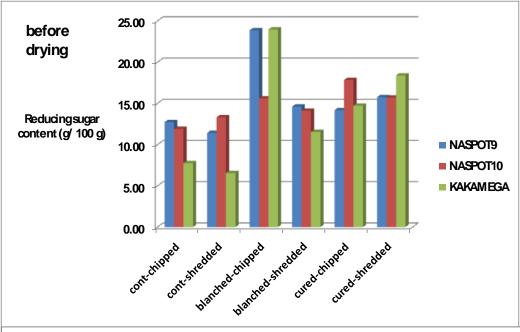



Fig 4. Moisture content of various SP dried products

- a) control roots washed, peeled, chipped/shredded & hot-air dried at 60°C for 18 h
- b) blanched roots washed, peeled, dipped in hot water (76-80C for 10 mins), drained & cooled, followed by chipping/shredding & hot-air drying at 60°C for 18 h
- c) Cured roots cured for 3 days at ambient conditions. Roots washed, peeled, chipped/ shredded & tunnel solar dried at 33±6°C for 36-48 h

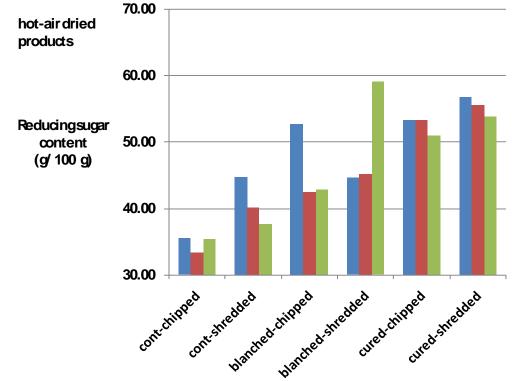


Fig 4. Reducing sugar content of various SP dried products

- a) control roots washed, peeled, chipped/ shredded & hot-air dried at 60°C for 18 h
- b) blanched roots washed, peeled, dipped in hot water (76-80C for 10 mins), drained & cooled, followed by chipping/shredding & hot-air drying at 60°C for 18 h
- c) Cured roots cured for 3 days at ambient conditions. Roots washed, peeled, chipped/ shredded & tunnel solar dried at 33±6°C for 36-48 h

Table 4: Effect of various flour processing methods on the Colorimetric values of sweet potato variety

FLOUR METHOD	COLOUR DESCRIPTION (AVERAGE VALUES)				
METHOD	NASPOT10	NASPOT9			
Control	+ 0.4 UNITS	+ 0.7 UNITS			
	YELLOW/ ORANGE	YELLOW/ ORANGE			
Cured	+ 0.7 UNITS	+ 1 UNITS			
	YELLOW/ ORANGE	YELLOW/ ORANGE			
Blanched	+ 0.9UNITS	+ 1.1 UNITS			
	YELLOW/ ORANGE	YELLOW/ ORANGE			

Table 5: Effect of flour method type and level of OFSP flour substitution on final loaf volume (m³) of bread

Flour method	l Variety	10%	20%	30%
type				
Control	NASPOT10	2.34±0.03a	1.94±0.08 ^a	1.54±0.11 ^a
	NASPOT9	2.37±0.01a	1.90±0.06a	1.59.0.10 ^a
Cured	NASPOT10	2.09±0.14a	1.84±0.09 ^a	1.45±0.39 ^a
	NASPOT9	2.18±0.0a	1.84±0.10 ^a	1.56±0.03 ^a
Blanched	NASPOT10	1.91±0.03a	1.75±0.70 ^a	1.28±0.01 ^a
	NASPOT9	1.94±0.08a	1.71±0.12 ^a	1.28±0.01 ^a

Mean scores in columns with the same superscript are not significantly different at $(p \ge 0.05)$

Conclusions

- □ Processing and post harvest handling options and appropriate technologies
- □Starch, moisture and reducing sugar contents
- □Subsequent products to be consumed and marketed