

Carotenoid retention and vitamin A activity in dried orange-fleshed sweet potato that is cooked, fried or stored

Aurélie Bechoff¹, Keith Tomlins¹, Claudie Dhuique-Mayer² & Andrew Westby¹ 1.Natural Resources Institute, UK; 2.CIRAD, France

Background

- Provitamin A carotenoids (pVACs) important for health
- Visible trait (yellow or orange)

pVACs can be degraded during cooking or processing

Issues

- Provit. A retention
 - after storage of dried OFSP?
 - after food preparation using dried OFSP (flour)?
- Little information in the literature (i.e. regarding the developing countries situation)

Background

- Main preparation of SP in Africa: boiling, steaming & drying
- Drying: facilitate transport & storage during off-season.
- Variety of products can be made from dried sweet potato

- Two studies; 1 storage; 1 food preparation -Journal publications:
- Journal of Agricultural & Food Chemistry (2011)
- Food Chemistry (2010)
- part of PhD thesis (2006-2010)

http://sweetpotatoknowledge.org/use-consumption/nutritionalinformation/processing-and-nutritionretension/Aurelie%20Bechoff%20PhD%20thesis-final.pdf/view

Storage study

Bechoff, A., Dhuique-Mayer, C., Dornier, M., Tomlins, K., Boulanger, R., Dufour, D. & Westby, A. (2010). Relationship between the kinetics of carotene degradation and norisoprenoid formation in the storage of dried sweet potato chips. **Food Chemistry**, 121, 348–357.

Storage under controlled conditions

Ugandan dried chips (Ejumula variety)

- 4 temperatures (10; 20; 30; 40°C)
- 4 aw (0.1; 0.3; 0.5; 0.7)
- 4 oxygen levels:0% (N₂), 2,5 % et 10%
 O₂, 21% (air)

Carotenoid degradation during storage was influenced by temperature (T): Arrhenius model

$$k = k_{\infty} e^{-\frac{Ea}{RT}}$$

Arrhenius equation

k=constant degradation (day⁻¹)
Ea = Activation energy (kJ.mol⁻¹)
R =universal molar gas constant

Experimental data validated model

4.3 % difference

88 days at ambient temperature (recorded) in laboratory

9.3 % difference

125 days at ambient temperature (recorded) in Uganda

Chemical degradation of trans-B-carotene

Fewest carotenoid breakdown

- Lowest temperature
- Highest aw
- Lowest oxygen level

Conclusion for storage study

- Carotenoid degradation in dried sweet potato could be predicted
- Degradation was fast under ambient conditions (about 70% after 4 months).

Food preparation study

Chapati

Porridge

Bechoff, A., Poulaert, M., Tomlins, K.I., Westby, A., Menya, G., Young S., and Dhuique-Mayer, C. (2011) Retention and bioaccessibility of -carotene in blended food from sub-Saharan Africa containing orange-fleshed sweet potato. Journal of Agricultural & Food Chemistry, 59, 10373-10380.

Food preparation

- 2-week field study (Feb-Mar10) in Uganda funded by NRIF
- Interview of 10 chapatti processors and 10 porridge makers (households)
- Samples made by processors using the same initial ingredients (30% Ejumula flour)
- Explore the variability between processors and influence of cooking parameters on carotenoid retention

Findings: food preparation

- Whilst the retention of trans-B-carotene varied in the methods of preparation (chapattis or porridge), there was no impact of method on carotenoid retention: 69-93% or 70-97% respectively for chapattis and porridge
- Both could provide significant provit. A to diet

OFSP ¹ product	Fat (%)	BC content (μg.g ⁻ ¹)		BC bioaccessbility (%)		Unit	Recommended Daily Allowance (RDA)			
							Classical estimate ⁵		Estimate taking into account bioaccessibility (in vitro digestion of product) ⁶	
		All- trans-	13-cis-	All- trans-	13-cis-		%RDA child*	%RDA mother **	%RDA child*	%RDA mother **
Boiled OFSP	-	95.0 ±2.4	7.4 ±0.2	9.9 ±0.1	43.5 ±4.5	Puree portion (100g)	204	102	46	23
Porridge	-	8.7 ±0.3	1.2 ±0.1	16.3 ±0.9	30.3 ±6.1	1 mug (300g)	58	29	20	10
Chapati	7.4 ±1.0	31.5 ±1.4	2.5 ±0.5	72.7 ±5.4	96.2 ±5.9	1 chapati (100g)	68	34	100	50
Mandazi	3.3 ±0.2	32.9 ±1.7	3.7 ±0.4	49.0 ±3.0	98.1 ±7.7	~2 mandazis (90g)	73	36	75	34

*< 6 years (to meet 400RE); **pregnant or lactating (to meet 800RE)

Fat: better absorption of pVACs

100% wheat flour chapatti

70% wheat flour / 30% Ejumula flour chapatti

Overall

conclusions/recommendations

- Losses can be as high as 70% after 4 months of storage but degradation can be predicted based on temperature; humidity and oxygen (air) data. Packaging (i.e. under vaccum) will be critical to limit air into the product.
- Losses can be as high as 30% during food preparation. Boiled sweet potato, or porridge and chapattis made from freshly dried SP flour could provide a significant amount of provitamin A to the diet (1/2 chapatti/day or 2 mugs of porridge/day or 100g of puree = 50% RDA).
- Fat (chapatis or mandazis) is good for increasing the absorption of pVACs and therefore the nutritional benefit.

UNIVERSITY Natural of Resources GREENWICH Institute

Acknowledgments.

HIND IN

HarvestPlus: Reaching end-users Project with OFSP CIRAD-Desi; NRIF (Natural Resources International Feilowship)

Constant and the

