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Genetic linkage maps of Tanzania and Bikilamaliya sweetpotatoes (Ipomoea
batatas (L.) Lam), based on amplified fragment-length polymorphism (AFLP)
were developed using a two-way pseudo-testcross. At a LOD score of 5, a
total of 656 maternal and 469 paternal markers were ordered in 90 and 80
linkage groups, respectively, covering a total map length of 3655.6 cM for
Tanzania and 3011.5 cM for Bikilamaliya. The average distance between
markers is 5.9 cM, with only four intervals exceeding 30 cM. Mapping was
carried out in two steps. Linkage among simplex markers provided a map
framework to which multiple-dose markers were added. The maternal maps
contained 91 duplex markers, which allowed identification of 13 homologous
co-segregating groups; paternal maps contained 69 duplex markers, allowing
identification of 10 homologous co-segregating groups. The exploitation of
215 double-simplex bridging markers detected 15 linkage groups as homolo-
gous maternal and paternal groups. Type of polyploidy (autopolyploidy vs.
allopolyploidy) was evaluated using the ratio of repulsion to coupling link-
ages. The absence of linkages in the repulsion phase indicated a high level of
polysomic inheritance of homologous chromosomes. The detection of a few
repulsion linkages at a lower confidence level, however, demonstrated that
there is partial preferential chromosome pairing in sweetpotato.

Maps of highly dense genetic linkages are  dose restriction fragment (SDRF) method

powerful tools for the localization and
map-based cloning of genes, as well as
marker-assisted breeding. They also
provide information for understanding the
biological basis of complex traits (Lee,
1995) and polyploidy (Da Silva, 1993).
Different approaches are available for
direct mapping of polyploid genomes,
most of which have been based on the use
of simplex (single-dose) markers (Wu et
al., 1992) derived from only one parent
and segregating in a 1:1 ratio. The single-
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has been applied to various polyploid
crops such as alfalfa, apple, sugarcane,
and potato. Multiplex markers have been
exploited to identify homologous co-
segregating groups in Saccharum (Da
Silva, 1993; Ripol et al., 1999) and alfalfa
(Yu and Pauls, 1993). Da Silva (1993) was
able to include duplex and triplex markers
in simplex marker maps and to identify
homologous groups.

Sweetpotato is a hexaploid species
(2n=6x=90) with a base chromosome
number of 15 (Jones, 1965). Cytological
studies of sweetpotato are difficult be-
cause of the high number of small
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chromosomes and large number of basic
groups, so the nature of its polyploidy
remains uncertain. Both allopolyploidy
(Jones, 1965; Magoon et al., 1970) and
autopolyploidy (Nishiyama et al., 1982;
Shiotani, 1988) have been proposed.
Shiotani and Kawase (1989) postulated the
genome constitution of sweetpotato as
(B,B,B,B,B,B,), but the degree of homology
could not be estimated with accuracy.
Ukoskit and Thompson (1997) reported a
polysomic inheritance in sweetpotato
based on the segregation ratio and rela-
tionship of the genetic linkages of RAPD
markers.

The commonly used mapping population
for outbreeding trees and polyploids is the
progeny of a cross between two unrelated
heterozygous parents (a two-way pseudo-
testcross) (Grattapaglia and Sederoff,
1994). With this mapping population,
linkage analysis of SDRFs in coupling
phase results in two separate linkage maps
for each parent based on the male and
female sources of markers. The ratio of
repulsion linkages versus coupling link-
ages was used to evaluate type of
polyploidy (Da Silva and Sorells, 1996).

In this paper, we report the genetic
inheritance, segregation, and linkage of
amplified fragment-length polymorphism
(AFLP) markers in two hexaploid
sweetpotatoes (2n=6x=90). We used an F1
population to construct two separate
parental maps, integrating simplex and
multiplex markers, and analyzed the
genome constitution based on the pattern
of inheritance and segregation of the
markers. These are the first reported
genetic-linkage maps that have substantial
coverage of the sweetpotato genome.
They provide a framework for tagging the
genes and quantitative trait loci (QTL) of
the economic traits of the sweetpotato.

Materials and Methods

Plant materials and DNA extraction

Seeds of an F1 mapping population
originated from a two-way pseudo-testcross
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between two African sweetpotato
landraces (Tanzania and Bikilamaliya).
Tanzania is the most widely grown
sweetpotato cultivar in sub-Saharan Africa
and is resistant to the sweetpotato virus
disease (SPVD) complex in East Africa.
Bikilamaliya is susceptible to SPVD under
the same environmental conditions.
Linkage mapping was carried out on a
subset of 94 randomly selected plants.
Genomic DNA was extracted from young
leaves of greenhouse-grown sweetpotatoes
using the CTAB method (Doyle and
Doyle, 1990).

AFLP assays and marker scoring

A procedure adapted from Zabeau and Vos
(1993) was followed for the AFLP analysis.
For the selection of primer combinations
(PCs), the two parental varieties (Tanzania
and Bikilamaliya) were screened with 240
EcoRI/Msel PCs. The PCs yielding a high
number of polymorphic fragments for each
parental line and with a total number of
fragments ranging between 50-100 were
selected for generating AFLP markers.

Autoradiographs were manually scored for
the absence (0) or presence (1) of AFLP
marker bands. Markers were chosen on the
basis of their presence in one parent and
absence in the other, or presence in both
parents. Scored markers were divided into
three groups depending on the presence or
absence in each parent.

Segregation ratio

The assessment of marker dosage was
done by the expected segregation ratios
(presence:absence) of F1s for AFLP
markers present in one parent in accor-
dance with the allele dosage for three
cytological theories of sweetpotato (Table
1). To classify fragments into dosage
groups, acceptance regions for simplex,
duplex, triplex, and double-simplex
markers were constructed.

Simplex markers. All markers present in
one parent and absent in the other were

tested for goodness of fit to the 1:1 segre-
gation ratio in the progeny by a X2 test at



Table 1. Expected segregation ratios (presence:absence) for the inheritance of a single gene in a hexaploid
plant, according to three cytological theories based on allele dosage.

Marker Autohexaploid Tetradiploid Allohexaploid

dose (hexasomic) (tetradisomic) (disomic)

Simplex Aaaaaa 1:1 Aaaa aa 1:1 Aaaaaall
aaaa Aa 1:1

Duplex AAaaaa 4:1 AAaa aa 5:1 Aa Aa aa 3:1
Aaaa Aa 3:1 AA aa aa -
aaaa AA -

Triplex AAAaaa 19:1 AAAa aa - Aa Aa Aa 7:1
AAaa Aa 11:1 AA Aa aa -
Aaaa AA -

Quadruplex AAAAaa - AAAA aa - AA Aa Aa -

the 99% confidence level, allowing type |
error = type Il error = 0.5%. The null
hypothesis (1.1 segregation) was tested
against the alternative hypothesis (3:1
segregation) since all non-single dose
ratios would be 3:1 or greater, regardless of
whether sweetpotato is an auto-, autoallo-,
or allopolyploid (Wu et al., 1992).

Duplex markers. Among the three cyto-
logical theories listed in Table 1,
allohexaploidy is the least likely genetic
configuration in sweetpotato (Nishiyama
et al., 1982; Shiotani, 1988; Ukoskit and
Thompson, 1997). Under the assumption of
either hexasomic or tetradisomic inherit-
ance, duplex markers are expected to
segregate 4:1 (hexasomic) and 3:1, 5:1
(tetradisomic) (Table 1). A 4:1, 5:1 segre-
gation ratio corresponds to a duplex
marker of fragments located on homolo-
gous chromosomes, compared to a 3:1
segregation ratio for a duplex marker
where the individual fragments are located
on nonhomologous chromosomes. The
latter are not useful for the estimation of
linkages among simplex/duplex and
duplex/duplex marker pairs. As the
population size used in this experiment
was not large enough to distinguish
between hexasomic and tetradisomic
situations, we looked for a common subset
of 4:1, 5:1 segregating markers as tested
by a x2 test for goodness of fit at a 10%
confidence level. This set of markers is
sufficient to distinguish duplex markers
from the expected segregation ratios for

triplex markers (11:1, 19:1) and simplex
markers (1:1). To separate the 3:1 from 4:1
or 5:1 segregation ratios, however, would
require an extremely large population
size. Therefore, in our study, calculation of
4:1 and 5:1 segregation ratios was not
totally exclusive of 3:1 markers.

Triplex markers. Triplex markers are
expected to segregate 11:1 under
hexasomic inheritance and 19:1 under
tetradisomic. As these segregation ratios
cannot be distinguished properly, and
estimates of recombination fractions
among simplex and triplex markers are
associated with large standard errors,
triplex markers were not analyzed.

Quadruplex markers. Quadruplex or
higher-dose markers were not expected to
result in observable segregation in the
offspring, except in the case of a
quadruplex marker with random chromatid
segregation, which would result in a
genotype not showing the marker.

Double-simplex markers. AFLP fragments
present in a single-dose condition in both
parents are expected to segregate in a 3:1
ratio in the population, as tested for H; at
a 10% significance level to avoid overlap-
ping with the 11:1 segregation class for
duplex-simplex markers.

Estimation of recombination fraction (r)
and linkage mapping

Linkage analysis and map construction
was carried out in two steps.
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In the first step, two parental framework
maps (maternal and paternal) were
constructed using simplex markers.
Simplex markers in coupling behave the
same in diploids as in polyploids and can
be mapped with standard methods. Since
detection of repulsion linkages in poly-
somic polyploids requires extremely large
populations, they were not included.
Recombination fractions and marker order
were obtained under the backcross model
using JoinMap 2.0 software (Stam and Van
Ooijen, 1995).

In the second step, duplex and double-
simplex markers were inserted in the fixed
marker order of the parental simplex
framework maps. Recombination fractions
were estimated by numerically maximiz-
ing the log-likelihood (Stam and van
Ooijen, 1995), assuming the random
pairing of homologous chromosomes and
the absence of double reduction.

Duplex markers. As the true underlying
mode of chromosome inheritance
(hexasomic vs. tetradisomic) in
sweetpotato remains uncertain, linkage of
simplex/duplex and duplex/duplex markers
in coupling were calculated for both
hexasomic and tetrasomic inheritance,
applying phenotypic frequencies given by
Ripol et al. (1999). The sets of pairwise r
and LOD estimates were alternatively
mapped to the simplex framework map
using standard procedures (JoinMap 2.0).
All duplex markers placed at different map
sites for the hexasomic and tetrasomic
inheritance types were removed, resulting
in identical maps with an equal number of
markers and marker order, with slightly
different map distances. The map with the
smallest map size was selected for adding
double-simplex markers.

Double-simplex markers. Recombination
fractions for simplex/double-simplex and
double-simplex/double-simplex configura-
tions of marker pairs were estimated
according to Meyer et al. (1998).

The final maps comprised simplex, duplex,
and double-simplex markers, with each
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linkage group corresponding to an indi-
vidual chromosome. Two linkage groups
containing the same duplex marker are
likely to be homologous. A duplex marker
should not align to more than two linkage
groups, unless a third group is an uncon-
nected part of one of them. Two linkage
groups were declared homologous female
and male linkage groups if they possessed
the same double-simplex (bridging)
marker. Final maps were drawn using
DrawMap 1.1 software (Van Ooijen 1994).
The expected genome coverage was
estimated according to Bishop et al.
(1983).

Estimation of polyploidy

For species with levels of high polyploidy,
the ratio between the number of detected
repulsion versus coupling linkages may
provide a crude measurement of preferen-
tial chromosome pairing (Sorrels, 1992;
Wu et al., 1992). Using Mapmaker’s two-
point linkage analysis (LOD =4, r < 0.3),
the repulsion linkage was analyzed
between an original marker and inverted
markers.

Results and Discussion

The high multiplex ratio of the AFLP
method was used to produce a large
number of highly reliable genetic markers
for linkage analysis. A total of 112 out of
the 240 primer combinations screened
were selected and used to generate AFLP
markers for 94 individuals of the mapping
population. Three genotypes were re-
moved from the data set because they
contained many missing data and could
have affected the estimation of the
genetic distances among the markers.

Segregation ratio

Clearly scorable markers were separated
according to their presence in the male
and female parents and in both. The
observed segregation ratio for each of the
808 female and 641 male markers are
shown in Figures 1 and 2. The distributions
appear with a large group centered around
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Figure 1. Observed segregation ratios for 808 markers in Tanzania.
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Figure 2. Observed segregation ratios for 641 markers in Bikilamaliya.
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5% of the expected segregation ratio for
simplex markers and a smaller group
around 8% where ratios of 3:1, 4:1, or 5:1
duplex markers are expected. At higher
frequencies, triplex markers or quadruplex
markers were observed, as expected under
random chromatide segregation. Segrega-
tion analysis resulted in 951 simplex
markers. A total of 298 markers fitted into
a 4:1 or 5:1 acceptance region as ex-
pected for duplex markers under
hexasomic and tetrasomic inheritance,
respectively. Eighteen markers showed a
segregation ratio significantly lower than
1:1, which was the lowest expected
segregation ratio; these were removed as
skewed markers. Of 540 segregating
markers present for both parents, 215
markers fitted into the 3:1 segregation
ratio for double-simplex markers.

Estimation of polyploidy based on
repulsion linkage

Type of polypoidy (autopolyploidy vs.
allopolyploidy) was investigated using the
ratio of coupling to repulsion linkages. For
diploids and disomic polyploids (allopoly-
ploids), linkages in the repulsion phase
should be equal to those in the coupling
phase, compared to autopolyploids, where
an extremely large sample size is required
for detecting repulsion linkages (Wu et al.,
1992). Simplex marker scores were
inverted and added to the original marker
scores. In diploids—as in allopolyploids—a
homologous recessive allele of dominant
single-dose fragments may be simulated
by its ‘marker image’ and this can be used
to detect linkages in the repulsion phase.
In autopolyploids, a total of m-1 alleles
(where m = ploid number) hide behind a
dominant simplex marker, so the image of
a simplex marker score only approximates
a recessive allele. Calculation of repulsion
linkages in polysomic genomes, therefore,
is limited to codominant markers.

Pairwise linkages among original and
inverted markers were estimated using
Mapmaker 3.0 (Lander et al., 1987). We
did not find a single linkage in repulsion
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phase (at LOD = 4 and a maximum
recombination fraction of 0.4), which
would be highly unlikely if sweetpotato
displayed strict disomic segregation. As
suggested by Wu et al. (1992), this ex-
cludes allopolyploidy, indicating a high
polysomy of sweetpotato chromosomes
within a base set.

A few repulsion linkages detected at
LOD = 3, r = 0.5 gave some evidence for
partially preferential pairing, which
supports a genome constitution
(B,B,B,B,B,B,) with a certain degree of
homology among the two genomes, as
proposed by Shiotani and Kawase (1989).
Chromosome association in many auto-
polyploid species is likely to be a
combination of random and preferential
chromosome association (Wu et al., 1992).

These results suggest that polysomic
inheritance plays a major role in sweet-
potato, with the occurrence of partially
preferential pairing among certain
chromosomes.

Framework map constructed with simplex
markers

Two linkage maps were constructed, based
on 539 simplex markers from maternal
sources and 421 from paternal sources,
using standard JoinMap 2.0 procedures
(Stam and van Ooijen, 1995). To avoid
false linkage detection, a LOD score of 5
was set as the linkage threshold for
grouping markers. This reduces the rate of
false positives to 1075, reducing the
number of false linkages to less than 1 in
100,000. Markers that could not be put in
the map during ‘round one’ or ‘round two’
of the JoinMap mapping procedure were
omitted. A total of 44 markers for the
female parent and 50 for the male parent
remained unlinked. There were 90 linkage
groups for Tanzania, with 48 major and 42
minor groups of three or two markers; for
Bikilamaliya, this was 80 linkage groups,
with 42 major and 38 minor groups. The
resulting linkage groups provided a
framework into which higher-dose markers



were mapped (for example, see Figure 3).
Grouping was consistent through a range
of LOD scores of from 4 to 6, suggesting
that the groups formed were highly
reliable. Linkage groups have been named
randomly until they can be aligned to
chromosome karyotypes.

Mapping of multiplex markers

The recombination fraction (r) and LOD
scores for simplex/duplex and duplex/
duplex marker configurations were calcu-
lated assuming (a) hexasomic and (b)
tetrasomic chromosome inheritance. The
absolute differences of pairwise estimates
(of r and LOD scores) under the two
inheritance types were low, with no more
than seven duplex markers placed on
different sites on the framework map.
These were therefore removed. Duplex
markers were assigned to one or two
chromosomes, establishing a base-group
connection within chromosomes.

The final maps comprised 678 markers for
Tanzania, with a total map length of
3655.6 cM, and 481 markers for
Bikilamaliya, covering a total map length
of 3011.5 cM. The maternal map consisted
of 90 linkage groups (71 groups with four
or more markers), compared to the pater-
nal map of 80 linkage groups (56 with four
or more markers). Of 160 mapped male
and female duplex markers, a total of 49
were aligned to two linkage groups, which
allowed us to order 60 chromosomes to 13
female and 10 male homologous co-
segregating groups. The maternal and
paternal maps contained 70 and 31
double-simplex (bridging) markers, respec-
tively, which allowed identification of 17
linkage groups as maternal and paternal
homologous groups.

The largest female linkage group was
129 cM and the largest male group was
99.5 cM, with average spacing between
marker loci of 5.9 cM with only four
intervals exceeding 30 cM. This should
provide reasonable genome coverage for
the detection of quantitative trait loci

(QTL). The percentages of mapped sim-
plex, duplex, and triplex markers were
90%, 54%, and 30%, respectively.

Genome coverage

To avoid overestimating genome cover-
age, only framework markers were used in
this procedure. The expected proportion of
genome coverage was estimated using 656
markers for the female map and 469 for
the male. Under the assumption of random
marker distribution, the probability of
being within 20 cM of any existing marker
will be 91% for any new female marker
and 88% for any new male marker (Bishop
et al., 1983).

The derived linkage maps have not yet
been resolved into the expected 90
linkage and 15 homologous groups. This is
because the total length of the sweet-
potato genome was not covered, and the
small linkage groups, in particular, might
represent unconnected parts of other
linkage groups. Therefore, additional
markers would be required to cover the
entire genome and facilitate the merging
of all homologous groups. Codominant
markers are also needed to confirm the
homology relations of chromosomes.
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Figures 3. Maternal (‘Tanzania’) linkage maps Linkage groups are named at their top; a second name in
parenthesis indicates the corresponding linkage group on the paternal map. Each marker locus is identified by
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the corresponding combination of primers used for its generation. A letter or a number at the end of each marker
identifies the individual fragments amplified by the same primer combination.
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Figure 3. (continued)
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