

Steps followed in NCM-ELISA

Sample preparation

Grinding leaf disks

(1 ml of extraction buffer per each leaf disk)

Extraction buffer

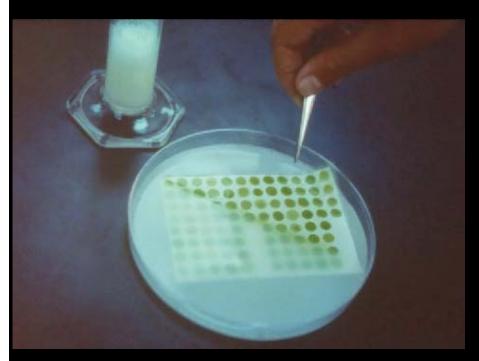
Sodium sulfite (Na₂SO₃) 0.2g (0.2%) TBS 100 ml

Tris Buffer Saline (TBS), pH 7.5 (2,000 ml)

Tris base 4.84 g (0.02M) NaCl 58.44 g (0.5 M)

Dissolve in 1,990 ml distilled water and adjust pH to 7.5 with HCl (5 N). Add distilled water to 2,000 ml final volume.

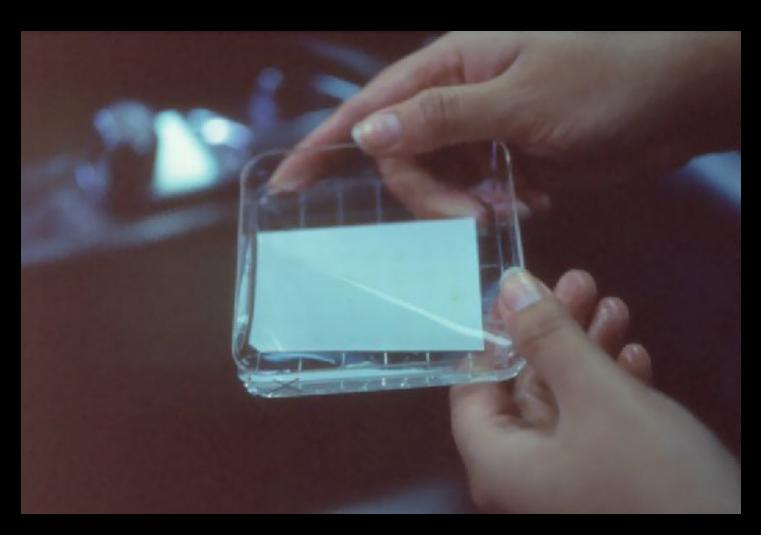
Application of samples to the nitrocellulose membrane



Method 1
Spot 17 ul sap onto each square of the nitrocellulose membrane included in the kit

Method 2
Using a dot-blotting apparatus connected to a vacuum pump (at 210 mm Hg) add 30-50 ul sap

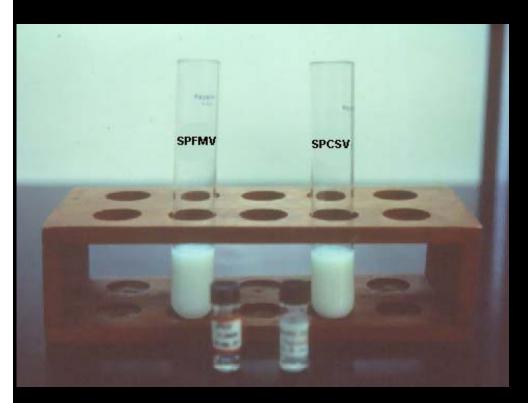
Blocking the nitrocellulose membrane



Blocking buffer solution

Milk powder (2%) Triton X-100 (2%) TBS

Incubate for 1 hour


Washing step

With TBS (one time, quickly)

Antibody-1

(virus - specific)

Antibody buffer solution

Milk powder (2%)

TBS (30 ml / membrane)

Antibody-1 (according to instructions in bottle)

Incubate overnight

Washing step

With T-TBS (TBS containing 0.05% Tween-20) (wash four times, 3 minutes each)

Antibody-2

(anti - antibody conjugated to enzyme)

Antibody buffer solution

Incubate for 1 hour

Milk powder (2%)
TBS (30 ml / membrane)
Antibody-2 (according to instructions in bottle)

Washing step


With T-TBS (TBS containing 0.05% Tween-20) (wash four times, 3 minutes each)

Preparation of substrate solution

NBT (Nitro blue tetrazolium)

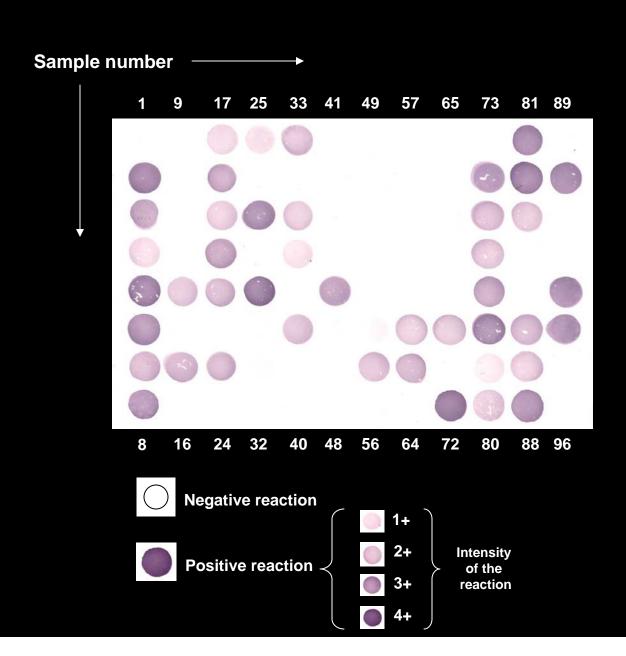
BCIP (5 Bromo-4-chloro-3-indolyl phosphate)

Substrate solution (per membrane)

NBT 3.0 mg BCIP 1.5 mg Substrate buffer 30 ml

Substrate buffer, pH 9.5

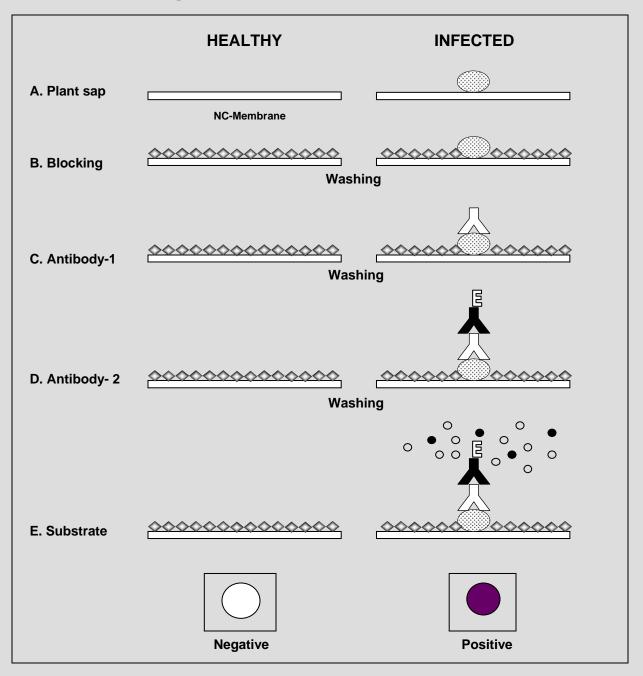
Tris base 0.1 M NaCl 0.1 M


MgCl₂ 0.005 M (= 5 mM)

Development of the reaction

Incubate for 30 to 60 minutes

Reading results


Recording results

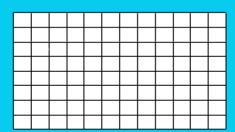
NCM-ELISA (SWEETPOTATO VIRUSES)

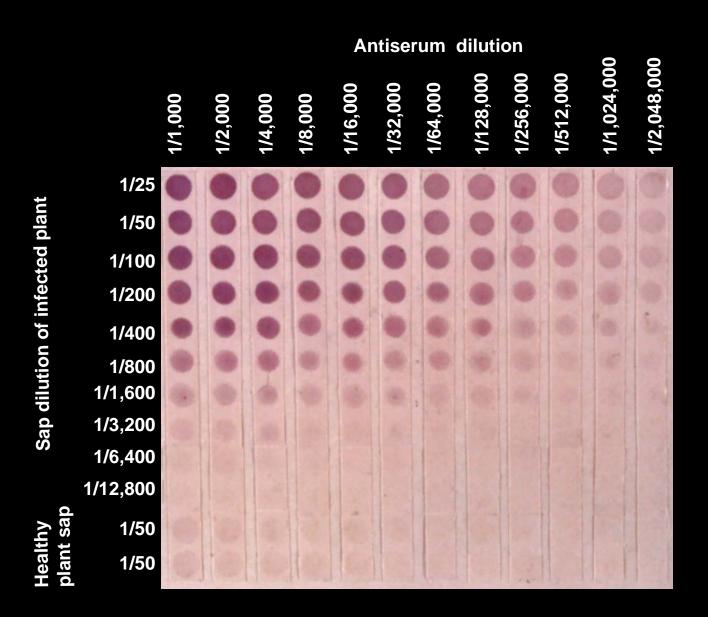
						lley, Peru		
Samples:	Plant	from	farmer	1 (Nuevo	Imperial	districts	
Date:		/	/			/		

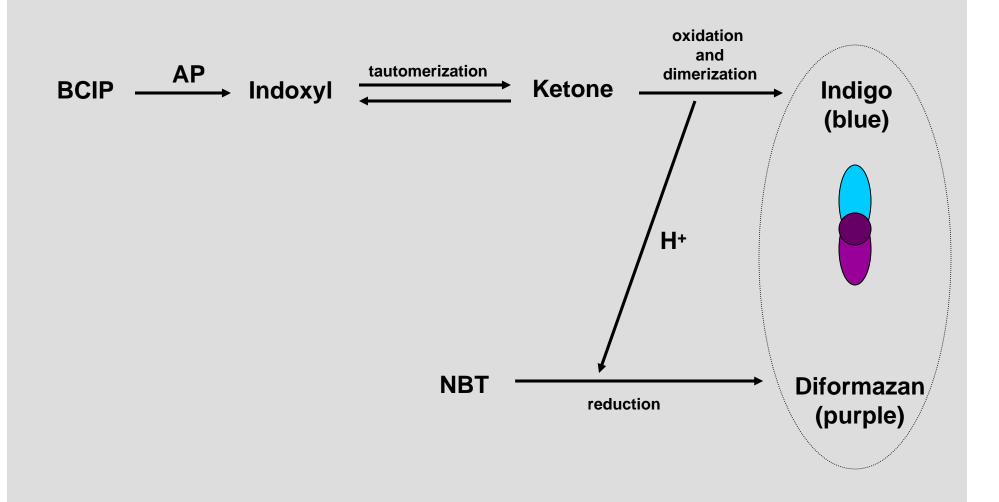
Con	jugate / Dilution:										1	Ky-C
N°		(INA-100 INIA)	Symptoms	N°	FMV	MMV	LV	CFV	C-6	MSV	CaLV	CSV
01	Plant 1		_	01	-							
02	2		c s	02	+							
03	3		es Acv	03	+							
04	4		De V	04	+						9 9	
05	5		AcV CS AcV	05	+							
06	6		CS	06	+							
07	2		AcV	07	+							
08	1		CS	08	+						1	0
09	9			09	-				-			
10			-	10	-							
11	10			11	-			_	+			-
12	12		-	12	-			_	-			
	12		ACV	13	+	_	_		-			
13	13			14		-		-	-			-
14	14		PR	15	+	-						-
15	15		PK	16		-		-	-	-	-	-
16	16				-	_	-	_	-	-	-	-
17	17		pr. es	17	+	-	-		-	-		-
18	18		Acu	18	+				-	-	-	-
19	19		ALV	19	+				-			-
20	20		es Cs	20	+				_			
21	21		CS	21	+							
22	22		-	22	-							
23	2.3		p.R	23	+							-
24	24		-	24	-							
25	25		CS	25	+							
26	26		_	26	174							
27	27		pR	27	+							
28	28			28	-							
29	25		Aev	29	+							
30	20		400	30	-							
31	30		_	31	-							
32	32		_	32								-
33	33		_	33	+							
34	20			34	-		-	_				_
35	34 35		es	35	+							_
36	33		52	36	+							
36	34 34			37	-		-		_		_	1
38	34		es	38	+		_		-			1
	38		5	39					-			+
39	34			40	-			_	-			1
40	40			41	_		-	_	-			_
41	41		-			-		-	-			-
42	42			42	-	-	-	-	-	-		-
43	43			43	-			-				-
44	44			44	-				-		-	-
45	45		Aev	45	+	-	-		-			-
46	46		-	46	-		-		-	_		-
47	47		_	47	-							
48	48			48	-							

Steps followed in NCM-ELISA

NCM-ELISA

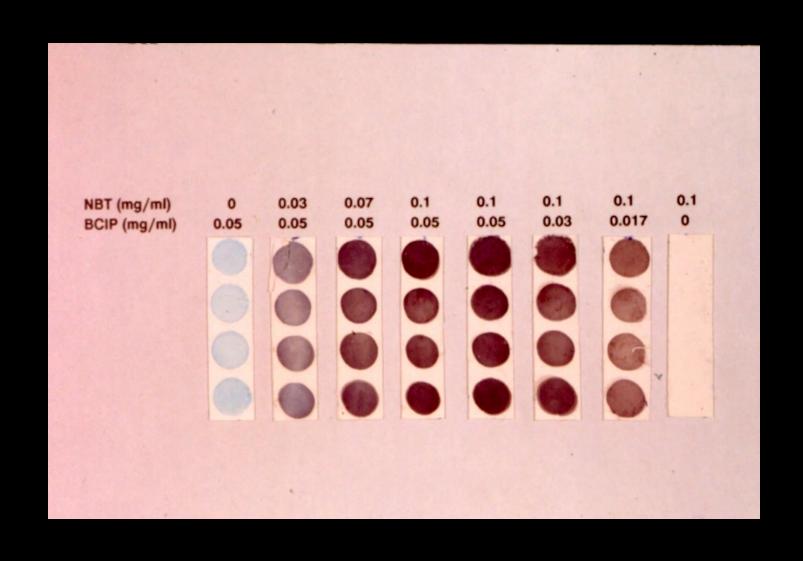




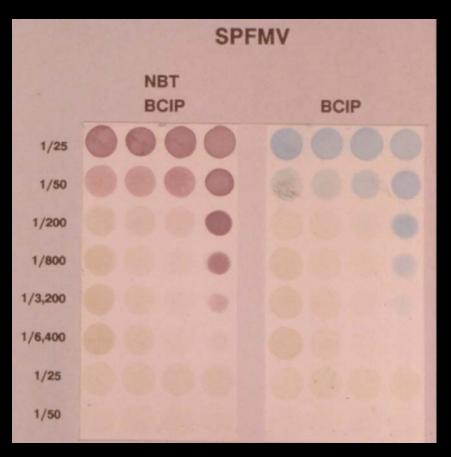


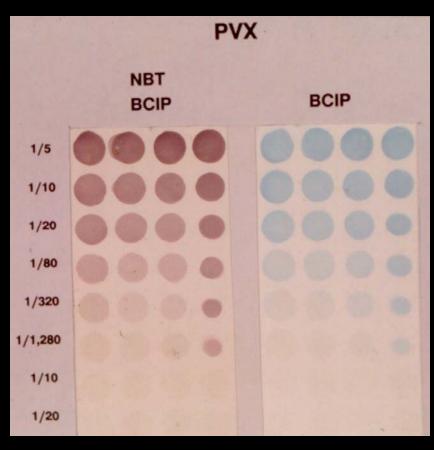
FUNDAMENTALS ON NCM - ELISA

Antibody titration



Color development reaction catalyzed by allkaline phosphatase (AP) with BCIP as substrate combined with NBT




Color development reaction catalyzed by allkaline phosphatase (AP) with BCIP as substrate combined with NBT

Effect of substrate components concentration on the color development

Comparison of developed membranes

30 min 2 to 3 h 30 min 2 to 3 h