Thinking about quality assurance for sweetpotato planting material: what are we learning? Margaret McEwan, CIP-SSA

> Sweetpotato Action for Security and Health in Africa

SASHA

9-11th September 2014 5th Annual SPHI Technical Meeting Nairobi, Kenya

Quality assurance for sweetpotato planting material

- Quality sweetpotato planting material (pest and disease free, of known source and varietal purity) can contribute to higher productivity
- An inspection process can:
 - Provide assurance to farmers & "protection" from unscrupulous seed dealers
 - Reduce risk of spread of disease and pests if PM is moved between different locations
 - Provide recognition to multipliers
- QDPM is appropriate where resources are limited, & is complementary to certified schemes;
- As sweetpotato seed systems move towards commercialisation & the "formal" sector – what are the issues?

Protocols and standards for vegetatively propagated crops

Quality declared planting material

Experiences

- Tanzania: pilot of community based inspection scheme using 3 models:
 - 12 Decentralized Vine Multipliers (DVMs) (~< 0.25ha) supplying to farmers in community
 - Self inspection; team inspection; external inspection
 - 2 inspections visits per multiplication cycle; pilot over 2 multiplication cycles
 - PHO, LZARDI, DALDO
- Ethiopia: pilot of informal seed inspection system for sweetpotato vines by committee at woreda level:
 - 3 commercial vine multipliers (~2 ha) supplying to FAO and INGOs
 - 3 inspections planned during one multiplication cycle (+ at harvest & packing)
 - SARI, EIAR, Bureau of Agriculture

Production of Quality Declared Planting Material (QDPM) of Sweetpotato, Ethiopia

Cut offs for QDPM Pilot Tanzania

 Table 2: FAO and Marando Bora tolerance levels: QDPM

Parameter	FAO QDPM Standard	Marando Bora (MB)					
		Very Good	Acceptable	Not acceptable			
Mosaic & stunting	1%	1%	5%	>5%			
Leaf curl	5%	5%	10%	>10%			
Purpling	5%	5%	10%	>10%			
Other varieties	2%	2%	2%	>2%			
Weevil	0%	0%	10%	>10%			
Alternaria							
Butterfly							

Data collection: growing plants

- 1st visit: 4 weeks after planting; up to 5 varieties to be inspected
 - History of previous crops and isolation distance observed
 - Documented source of material (records)
 - Beds labelled with name of variety and date of planting
 - Evidence of roguing practice
 - Varietal purity in bed
 - Presence of symptoms of serious diseases
 - Incidence and severity of virus symptoms
 - Presence of serious pests
- 2nd visit: 2 weeks prior to harvest
 - Physiological age of material & estimated quantity of m harvested

Comparison of inspection results: FAO & MB tolerance levels: 1st cycle

Table 3 : Comparison of inspection results using FAO and MB tolerance levels											
	Sweetpotato varieties										
No. & % plots	Ejumula		Jewel Kabode		oode	Polista		Ukerewe		Total	
meeting MB											
and FAO	Jan	Mar	Jan	Mar	Jan	Mar	Jan	Mar	Jan	Mar	
tolerance levels											
Total plots											
inspected (n)	6	7	1	1	7	9	8	10	7	8	64
No. MB											
acceptable (n)	2	3	0	0	6	7	7	10	3	3	41
Acceptable (%)	33	43	0	0	86	78	88	100	43	38	64%
No. FAO											
acceptable (n)	0	0	0	0	2	3	5	2	1	2	16
Acceptable (%)	0	0	0	0	29	33	63	20	14	25	25%
Source: Field data from 1 st and 2 nd rounds of inspection visits 2012											

Comparison of inspection results: FAO & MB tolerance levels: 2nd cycle SASHA

Table 4 : Comparison of inspection results using FAO and MB tolerance levels											
No. &% plots meeting	Ejumula		Jewel		Kabode		Polista		Ukerewe		No.
MB and FAO tolerance	ce								Inspt.		
levels											
	Aug-	Nov-	Aug-	Nov-	Aug	Nov-	Aug-	Nov-	Aug-	Nov-	
	12	12	12	12	-12	12	12	12	12	12	
Total plots inspected	8	6	4	5	9	7	5	7	6	8	65
No. MB acceptable (n)	3	2	1	3	6	5	4	5	2	5	36
Acceptable %	38	33	25	60	67	71	80	71	33	63	55%
No. FAO acceptable											
(n)	1	1	0	1	1	1	1	2	0	1	9
Acceptable %	13	17	0	20	11	14	20	29	0	13	14%
Source: Field data from 2 nd cycle 3 rd and 4 th rounds of inspection visits 2012.											

Yield and income benefit from using cleaned up & improved varieties SASHA

Sweetpotato Action for Security and Health in Africa

Table 5 : Yield and income benefit from using improved and cleanedup varieties distributed by Marando Bora

Variety	Yield t/ha	Diff. t/ha	% diff.	Price \$/kg	Gross income US\$/ha	Gross Income benefit US\$/ha	Cost of planting material for 1 ha US\$	Net income US\$/ha	Net income benefit US\$/ha
Kabode	12.9	5.6	43.4	0.18	2,322	1,008	177	2,145	831
Polista MB	9.7	2.4	24.7	0.18	1,746	432	177	1,569	255
Polista farmer	7.3	0	0.0	0.18	1,314	0	86	1,228	

Source: Yield data from demonstration plot data for 2011/2012.

Costs of inspection

Table : Cost of inspection as a percentage of value of vine sales for different scales ofmultiplication

Multiplication and	Scale of Multiplier: plant population/area						
cost parameters	under multiplication						
	300	1500	250,000				
	(1 bed)	(3 beds)	(0.5 ha)				
Nominal multiplication rate	10	10	10				
No. of cuttings produced	3,000	15,000	2,500,000				
Sales price @ 7 Tsh (US\$0.0045) cutting	\$14	\$68	\$11,250				
District inspection cost (US\$)	\$51	\$51	\$51				
Total cost of DPPO inspected cuttings (US\$)	\$64	\$118	\$11,301				
External Inspection cost as % of vine	375%	75%	0.5%				
value							
VEO inspection cost (US\$)	\$20	\$20	\$20				
Total cost of VEO inspected cuttings (US\$)	\$34	\$88	\$11,270				
VEO Inspection cost as % of vine value	148%	30%	0.2%				

Source: QDPM inspection visits August and November 2012

Findings

Tanzania

- in 1st and 2nd season respectively: 64% and 55% of all plots inspected achieved the "acceptable" MB standard; 25% and 14% of plots achieved FAO standard;
 - FAO standards: zero tolerance for weevils
 - farmer multipliers performed better than trained multipliers
- "local" inspectors can perform the inspections to the same level of confidence as "external" inspectors;
- 25% and 43% yield increases translating into \$255 and \$831 net income benefit/ha from using cleaned-up planting material of Polista and Kabode, respectively compared to farmer selected Polista;
- the total inspection cost per site is estimated at \$50 and \$20 for inspection by a DPPO and VEO, respectively
 - on small plots the cost of inspection is 375% of the value of the planting material;
 - once the scale of multiplication increases to around 0.5 ha, then the cost of inspection as a percentage of the value of the planting material reduces to 0.5% and 0.2% for inspections conducted by the DPPO and VEO, respectively.

Ethiopia

Table 5: Recommended tolerance levels for field inspection - SNNPR

1Isolation distance (with suitable barrier like maize, Napier grass, etc) (otherwise: 100 m away)5 meters2Other varieties (off-type)2 %3Viruses (mottling, mosaic, leaf curl and stunting)5 %4Diseases (mainly stem blight caused by Alternaria sp.)0 %-5Sweetpotato butterfly (Acrea acerata)0 %6Weevil (Cylas puncticollis)0 %	Νο	Requirements/defects/diseases	Tolerance
2Other varieties (off-type)2 %3Viruses (mottling, mosaic, leaf curl and stunting)5 %4Diseases (mainly stem blight caused by Alternaria sp.)0 %-5Sweetpotato butterfly (Acrea acerata)0 %6Weevil (Cylas puncticollis)0 %	1	Isolation distance (with suitable barrier like maize, Napier grass, etc) (otherwise: 100 m away)	5 meters
3Viruses (mottling, mosaic, leaf curl and stunting)5 %4Diseases (mainly stem blight caused by Alternaria sp.)0 %-5Sweetpotato butterfly (Acrea acerata)0 %6Weevil (Cylas puncticollis)0 %	2	Other varieties (off-type)	2 %
4Diseases (mainly stem blight caused by Alternaria sp.)0%-5Sweetpotato butterfly (Acrea acerata)0%6Weevil (Cylas puncticollis)0%	3	Viruses (mottling, mosaic, leaf curl and stunting)	5 %
5Sweetpotato butterfly (Acrea acerata)0 %6Weevil (Cylas puncticollis)0 %	4	Diseases (mainly stem blight caused by Alternaria sp.)	0 %-
6 Weevil (<i>Cylas puncticollis</i>) 0 %	5	Sweetpotato butterfly (Acrea acerata)	0 %
	6	Weevil (<i>Cylas puncticollis</i>)	0 %

Ethiopia: summary results

- 3 sites inspected: none achieved standard
- Not acceptable for PM distribution: virus, alternaria, SP butterfly and vectors
- Challenges with inspection process: lack of records for source of PM, rotation, DoP; scattered fields, and fields at different stages
- Institutionalisation issues relate to:
 - Who does inspections (woreda or region)
 - Who will pay
 - Tender process by large organisations

Engagement with national regulatory bodies

- 1. **Tanzania**: results of pilot discussed with stakeholders in Lake zone and at national level
 - a. Recommendation to draft & validate tolerance levels for all classes of seed (pre-basic to QDS)
 - b. Validation process for other seed classes
- 2. Ethiopia: 3 regional stakeholder validation workshops undertaken. Findings to be incorporated into national policy guidelines
- 3. Uganda: tolerance levels for all seed classes drafted on basis of Tanzanian document. Pilot for validation under discussion
- 4. Malawi: standards drafted but need to be piloted and validated?

Reflections

FAO standards: an ideal to work towards

- What standards are currently appropriate at each level of multiplication
- Who should do the inspection (knowledge, cost)?
- Who pays for inspection

How relevant are grain crop seed protocols for VPCs?

- Need for decentralized approach
- When are lab-tests appropriate & when is visual inspection appropriate
- What level of quality are farmers willing-to-pay for should standards be negotiated locally?
- Capacity building to identify & manage pests & diseases
 - Emphasis on learning rather than policing?

Conclusions

- Ensure that over-regulation and bureaucracy do not stifle emerging seed entrepreneurs at birth;
- Increased yields are important, but only if farmers have access to output markets;
- A multi-pronged strategy is needed:
 - breeding efforts are continuing to develop virus resistant varieties;
 - strengthening the efforts of farmers to maintain seed quality;
 - advocating for formal inspection processes to focus on the up-stream seed chain where prebasic and basic planting material is produced.

Thank you!

Acknowledgements: SASHA, The Gates Foundation, Dorothy Lusheshanija (PHO Mwanza), Sam Namanda (CIP-Uganda), LZARDI, BPBL (Ethiopia) SARI)