

- Rwanda and Kenya

Ben Lukuyu, Sammy Agili. Charles Gachuiri and Carlos Leone-Velarde

The 4th Annual Technical Meeting for the SASHA Project and the Sweetpotato for Profit and Health Initiative in Kumasi, Ghana (7-9 October 2013)

Why sweetpotato as animal feed?

Sweetpotato Action for Security and Health in Africa

Why sweetpotato?

- Most forages are scarce in quantity and of are inadequate quality especially in dry season
- Sweetpotato vine provides more protein and dry matter per unit area than other staple feeds and requires less land to produce
- Can easily be incorporated in smallholder farming systems – abundant suitable niches

Advantages of sweet potatoes

- Can be used in fresh, dried form or silage
- Crop is grown with low inputs,
- Adapted to wide range of climatic conditions
- Produces high dry matter yield per unit area
- Short growing period
- SPR reduces over reliance on maize as ruminant feeds hence compliments maize as staple food and monogastric feeds

Project objectives

- Identify the appropriate adapted dual purpose and forage varieties for specific livestock production systems and specific agro ecologies
- Determine the most appropriate combination of sweetpotato vines/roots with other available feedstuffs that maximize livestock productivity
- Model and test novel feed and production and feeding strategies based on optimizing sweet potato legumesother feed resources-pig and dairy interactions

Activities

- Activity 1: Screening sweet potato germplasm for biomass production under different cropping regimes and their potential as dual-purpose varieties
- Activity 2: Adapting simple, low-cost, silage-making techniques using sweet potato roots and vines, other feed resources and legumes
- Activity 3: Modeling and testing novel feed production and feeding strategies based on optimizing sweet potato-legumes-other feed resources-pig and dairy interactions

Activity 1

Screening sweetpotato germplasm for biomass production under different cropping regimes and their potential as dual-purpose varieties

Screening design and parameters

Design

Kenya:

- Comprised 6 sites x 6 varieties x 2 harvesting times.
- Harvesting regimes [75days (vines only) & 150 days (vines and roots)].

Rwanda:

- Comprised 6 sites x 8 varieties x 2 harvesting times.
- Harvesting regimes [80days (vines only) & 150 days (vines and roots)].

Parameters

- Total yield (forage and root)
- Nutritive value (proximate analysis)
- Climatic data (rainfall and temperature)
- Soils samples (N, P and K)
- Participatory farmer evaluation (150 days)

Results - Kenya

(On-farm trials)

R:V ratios across AEZs in Kenya

Sweetpotato Action for Security and Health in Africa

AEZ	103001.15 2	Gweri	Kemb 23	Kemb 36	Naspot 1	Wagabolige	
High altitude (wet)	0.8	0.2	0.4	0.4	0.5	0.4	
Mid altitude (wet)	0.7	0.2	0.4	0.3	0.4	0.2	
Mid altitude (dry)	0.6	0.2	0.3	0.3	0.5	0.4	
High altitude (dry)	0.4	0.1	0.1	0.1	0.2	0.1	
Mean	0.6	0.2	0.3	0.3	0.4	0.3	
Classification	R	F	DPH	DPH	DPL	DPH	
	<u>Classification</u> Forage (F) Root	<u>R:V ratio</u> ≤ 0.2 RV > 0.55	ClassificationR:V ratioDual purpose -low (DPH)0.31 > RV < 0.55				

Biomass yield (t DM/ha) of SPV of day-150 ratooned (R) and unratooned (U) of six cultivars in different AEZs

Sweetpotato Action fo

	High a	ltitude	Medium altitude		Low altitude	
Cultivar	R	U	R	U	R	U
103001	0.76 ^d	0.10 ^c	1.04 ^e	0.72 ^e	2.30 ^e	3.17 ^b
Gweri	1.34 ^a	0.31 ^b	3.86 ^a	2.18 ^d	5.37 ^a	2.68 ^d
Kemb23	1.02 ^c	0.38 ^b	(3.43 ^b)	2.67 ^b	3.31 ^b	2.68 ^d
Kemb36	1.07 ^b	0.31 ^b	2.87 ^c	2.05 ^d	3.04 ^d	3.47 ^a
Naspot1	0.89 ^d	0.56 ^a	2.49 ^d	3.67 ^a	(3.13°)	2.98 ^c
Wagabolige	1.02 ^c	0.17 ^c	3.49 ^b	2.49 ^c	2.44 ^e	1.63 ^e
Mean	1.02	0.31	2.86	2.30	3.27	2.77

Biomass yield (ton DM/ha) of SP storage roots for day-150 ratooned (R) and unratooned (U) of six cultivars in different AEZs

	High a	ltitude	Medium	Medium altitude		ltitude
Cultivar	R	U	R	U	R	U
103001	1.41 ^a	1.44 ^b	1.48 ^a	1.83 ^a	1.56 ^a	2.06 ^a
Gweri	0.18 ^d	0.19e	0.29 ^c	0.42 ^d	0.32 ^d	0.41 ^d
Kemb23	0.26 ^d	0.89 ^c	0.97 ^b	0.63 ^c	0.62 ^c	0.67 ^c
Kemb36	0.38 ^c	2.08 ^a	0.40 ^c	0.70 ^c	0.50 ^c	0.77 ^c
Naspot1	0.63 ^b	1.30 ^b	1.07 ^b	1.92 ^a	1.35 ^b	1.63 ^b
Wagabolige	0.24 ^d	0.64 ^d	0.45 ^c	0.96 ^b	0.51 ^c	0.85 ^c
Mean	0.52	1.09	0.78	1.08	0.81	1.07

CP (%) of SPV for day-75), 150 ratooned (R) and unratooned (U) of six cultivars in different locations

	High altitude			Me	dium altit	um altitude Low altitude			de
Cultivar	75	150R	150U	75	150R	150U	75	150R	150U
103001	26	22	22	21	17	20	24	21	21
Gweri	25	21	23	21	20	21	22	14	17
Kemb23	26	23	21	20	17	19	21	16	21
Kemb36	22	21	22	21	17	20	22	19	19
Naspot1	24	22	20	22	17	23	26	20	21
Wagabolige	24	22	21	18	18	19	21	18	19
Mean	25	22	22	20	18	20	23	18	20

Ranking of preference of various ______attributes

Farmers' preferred attributes

Flavor

				110/01		
Cultivar	Fibrousness	Sweetness	Forage	(DM)	Score	Ranking
103001	3	4	3	5	15	4
Gweri	5	4) 5	15	4
Kemb23	2		2	3	8	2
Kemb36	2	3	2	4	11	3
Naspot1		2	2	2	7	
Wagabolige	4		2		8	2

Key summary of findings

- In Kenya:
 - One variety (Gweri) was identified as most promising for forage
 - Four other varieties (Kemb-23, Naspot-1, Wagabolige, Kemb 37) were identified as "best bet" dual purpose varieties
 - ✓ Another (103001.152) was identified as mainly good for root
 - At least one varieties performed well in each different agro ecological zones, ensuring that farmers in each zone have at least one suitable option
 - All varieties performed poorly in high altitude cold areas suggesting the need to select/breed for cold tolerant varieties

Key summary of findings

- Farmers will have to make tradeoffs in choosing between forage, dual purpose, and root varieties depending on feed needs on farms.
 - ✓ It is likely that farmers facing acute feed shortages will opt for forage or dual purpose varieties.

On station Screening of Sweetpotato Varieties and Silage Trial

Treatments (g)

(Vines: Root ratio on % basis)	Salt	Molasses	Cassava meal	Maize meal	Poultry manure
75:25	15				
75:25	15	60			
75:25	15		150		
75:25				150	
75:25	15				300
		Silos opened	after 90 days	S	

Comparison of significance level between SPV and SPVR among additives (T-test)

Additive	рН	NH3-N	DM	СР
Cassava meal	0.083	0.027*	0.468	0.027*
Poultry				
manure	0.038*	0.499	0.087	0.087
Maize meal	0.020*	0.398	0.367	0.367
Molasses	0.004*	0.483	0.004*	0.002*
Salt	0.029*	0.725	0.457	0.457

*P≤0.05-Significantly different

Key findings

On-station silage trials demonstrated:

- The potential for silage additives like cassava meal, maize meal, and molasses as blends with sweetpotato silage using roots and vines
- Produced promising proportions of roots and vines for pig diets and also as a blend with other locally available feed resources

Testing sweetpotato based feed and feeding strategies in pig production systems in central Kenya

Activities accomplished

- Pig survey to understand the current sweetpotato and pig production practices in the study sites
- Evaluation of a new form of effluent drainage from silage by using a "modified plastic tank silo"
- Tested the appropriate level of combination of sweet potato vines and roots
- Determined the appropriate level of combination of Napier grass and sweet potato vines

Pig production survey

Surveyed 3 district; sampled 50 farmers per district

- 97% of pigs were reared on intensive production system
- 38% of pigs fed on kitchen and garden waste
- 32% fed on commercial concentrates and ingredients
- 15% on forages (including SPV)

- 58% of respondents were growing sweet potato as food as well as forage for livestock
- 85% of farmers ranked SP as the most important fodder

Pig feeding trial

SASHA Sweetpotato Action for Security and Health in Africa

Farms and feed

- Three farmers selected in each of the three districts (9 farms)
- Naspot 1 selected based on results of on farm trials
- The SP were multiplied farms; seed provided by CIP
- The vines and roots were harvested at 160 days of growth

Silage preparation

- Silage prepared 75% vines: 25% roots.
- Vines chopped (~ 3 inches) and roots sliced (~ 1 inch).
- Molasses water mixture (1:2 proportion) and salt included at 0.5%.

Experimental design

There were four treatment;

- T1-100% concentrate (control)
- T2-85% concentrate: 15% silage,
- T3- 70% concentrate: 30% silage,
- T4- 55% concentrate: 45% silage

Each treatment was replicated 3 times i.e. twelve (12) pigs per farm

- Approx. 3 months of age with 20 - 30 Kg live weight.
- Animals randomly distributed to all the treatments based on sex and live weights

Mean intake (DM) and growth rates (Kg)

Fig 2: Mean dry matter intake (kg/d) of pigs fed different treatments

Key point:

- The pigs on treatments with silage diet consumed more feed compared to the control
- The growth rate of two silage diets (T2 and T3) were not different from the concentrate.

Security and Health in Africa

Fig 2: Mean weight gains (kg) of weaner pigs fed different treatments

Cost (US\$) of raising piglets fed on different diets

SASEA Sweetpotato Action for Security and Health in Africa

	12	ŀ	28		42		56		Ove	rall
Treatmer	nt Mean	se	Mean	se	Mean	se	Mean	se	Mean	se
T1	137	18	123	11	121	7	123 ^a	6	126 ^a	6
T2	143	24	124	8	135	7	137 ^b	6	125 ^a	7
Т3	77	26	127	11	143	17	145 ^b	13	135 ^a	9
T4	110	24	139	22	161	29	156 ^b	21	142 ^a	12

Selecting optimum ranges of technological alternatives by using response surface design in Sweetpotato silage

Response surface

Equations ; $y = f(x)$	
$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + $	Е

	Name	Unit		ID
¥1	Protein	%		Prot
¥2	Digestibility	%		DiG
actors				
	Name	Unit		Id
X1	Napier	%		Napier
	Code (2) =	70.00	%	1.000
	Code (1.682) =	66.82	%	
	Code (1) =	60.00	%	
	Code (0) =	50.00	%	
	Code (-1) =	40.00	%	
	Code (-1.682) =	33.18	%	
	Code (-2) =	30.00	%	
	Name	Unit		id
X2	Vines	z		Vines
	Code (2) =	40.00	%	
	Code (1.682) =	38.41	%	
	Code (1) =	35.00	~	
	Code (0) =	30.00	%	
	Code (-1) =	25.00	7.	
	Code (-1.682) =	21.59	×.	
	Code (-2) =	20.00	%	
	Name	Unit		ld
X3	Roots	~		Roots
	Code (2) =	30.00	%	
	Code (1.682) =	28.41	7.	
	Code (1) =	25.00	%	
	Code (0) =	20.00	%	
	Code (-1) =	15.00	7.	
	Code (-1.682) =	11.59	7.	
	Code (-2) =	10.00	1	

Recommendations

-	-			X1 = Napier		
Y=		33.18	40.00	50.00	60.00	66.8
Dro	→	9.18	8.82	8.38	8.04	7.86
		9.73	9.47	9.17	8.97	8.89
Vines	30.00	9.92	9.80	9.70	9.70	9.76
	35.00	9.35	9.37	9.48	9.69	9.89
	38.41	8.54	8.65	8.90	9.25	9.54

Vines - Roots

	(=			X1 = Napier		
	DiG	33.18	40.00	50.00	60.00	66.82
	21.59	83.27	84.13	82.13	76.23	69.97
X2 =	25.00	80.33	81.73	80.51	75.40	69.67
Vines	30.00	77.91	80.09	80.02	76.05	71.11
	35.00	77.72	80.68	81.76	78.94	74.78
	38.41	78.86	82.36	84.22	82.19	78.56

Y= Digest		X1= Vines				
		60.86	65.00	75.00	85.00	89.14
X2 = Roots	17.93	86.11	84.97	8769	81.10	80.65
	20.00	86.84	85.73	82.53	82.03	81.61
	25.00	87.76	86.73	84.74	83.43	83.09
	30.00	87.51	86.56	84.76	83.65	83.39
	32.07	87.05	86.14	84.42	83.39	83.17

Thoughts on way forward

- On-farm trials to select appropriate cold tolerant sweetpotato dual purpose & forage varieties; multiply foundation material.
- The need to conducts fresh, chopped sweetpotato vine feeding trial to document impact on milk production.
- The need to test alternative sweetpotato silage recipes and packaging developed through the feed POCP.
 - Cow feeding trials based on sweetpotato silage
- Test two different systems for making & delivering silage: specialized large-scale silage producers vs home silage production

The SASHA feeds proof of concept team

Front row: Left to right

- Esther Karanja (EADD)
- Ben Lukuyu (EADD)
- Francis Nyaga (Farmers choice)
- Francis Ondambu (KARI)
- Charles Lusweti (KARI)
- James Kinyua (Egerton)
- Sylvia Wafula (EADD)
- Lonita Manoa (University of Nairobi)

Back row: Left to right

- Sammy Agili (CIP)
- Moses Ndathe (EADD)
- Levi Musalia (Egerton University)
- Patrick Mudavadi (EADD)
- Josephine Kirui (EADD)
- Prof. Charles Gachuiri (University of Nairobi

The End.

Thank you