

DEVELOPMENT OF DUAL-PURPOSE SWEETPOTATO VARIETIES THROUGH PARTICIPATORY BREEDING IN RWANDA

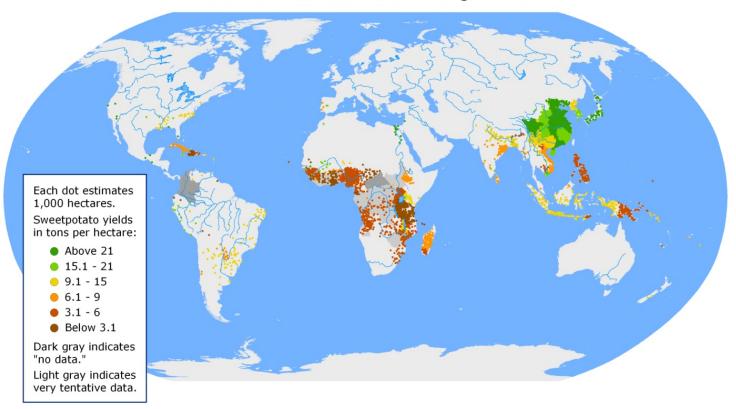
D. Shumbusha, J. Ndirigwe, L. Kankundiye

The 9th APA Triennial Conference

Kenya, Naivasha, July, 2013

Outline

- i. Introduction
- ii. Materials and Methods
- iii. Results
- iv. Discussion
- v. Conclusion and recommendations



Global sweetpotato cultivation

Sweetpotato Production

Areas of Cultivation and Average Yields

Source:

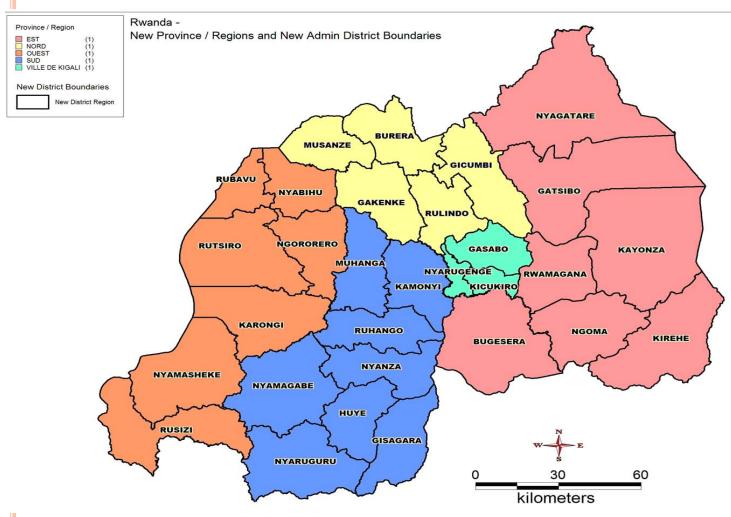
https://research.cip.cgiar.org/confluence/display/WSA/Global+Sweetpotato+Cultivation

Overall breeding objective in Rwanda

Overall breeding objective:

To develop sweetpotato varieties with:

- □ High fresh root yield and vines (dual-purpose)
- Quality traits (mainly DMC, Bcarotene)
- Tolerant to pests and diseases
- Suitable for specific or wide adaptation, farmer preferred)



Targeted areas

Targetted
areas are low,
mid and high
altitudes of
Rwanda

Low altitude:

Bugesera and Ngoma Districts

Mid-Altitude:

Huye, Muhanga Districts

High altitude:

Rulindo and Gakenke Districts

Objectives of this research

Overall objective:

 Develop through participatory and accelerated breeding, sweetpotato varieties with high yield for both fresh roots and vines, suitable to be used as dualpurpose use

Specific objectives

- Select high yielding, high dry matter and high Betacarotene content clones
- Conduct on-farm participatory selection with farmers for clones with farmer preferred characteristics

Research sites and Germplasm

Site	Location	Characteristics
Rubona	South Rwanda	Mid-altitude, low SPVD pressure
Karama	East Rwanda	Low altitude, semi-arid, high SPVD pressure
Ngoma	East Rwanda	Low altitude, medium SPVD pressure

Germplasm	Important traits
1. Thirty high yielding clones recorded by farmers as "elites"	High DMC, farmer-preferred
2. Thirty sweetpotato improved parents	High root yield, high Beta- carotene, low DMC

Crosses

- □ Germplasm: 154 families
- □ A crossing block with 60 parents was established at Rubona. The 60 parents were crossed in a factorial controlled cross design [6 male parents (3 WFSP and 3 OFSP) x 54 female parents]

Field experiments

- □ 5,380 well-established genotypes entered OT
- □ 268 were selected and advanced in PT, through PVS
- □ 25 best clones were selected and entered advanced breeding clones trials

Field experiments (cont'd)

- On-farm trial conducted in 3 main growing areas
- ❖ 10 promising varieties for dual purpose use planted on –farm (5 varieties+ 1 local check for each farmer)
- * In total 42 farmers handling on-farm trials (High altitude: 12, Mid-altitude: 15; Low alt & semi-arid: 15)

Results

Performance of sweetpotato clones across 3 locations Rubona, Karama and Ngoma, 2013 A

Clone	MRW (kg)	MRN	Root yield (t/ha)	V V (scor e 1-9)	VW (kg)	SPVD (score 1-9)	Alternari a (score 1-9)
RW11-17	7.1	29.8	21.6	5.9	15.4	1.3	1.0
RW11-1860	6.8	29.0	20.9	5.2	12.2	2.2	1.0
RW11-2419	5.6	21.5	20.3	5.8	11.7	2.8	1.3
RW11-2560	8.1	24.8	22.2	4.8	11.9	2.2	1.0
RW11-2910	5.8	17.8	20.4	4.2	12.5	2.5	2.0
RW11-4923	5.9	24.5	19.0	4.7	14.2	2.0	1.0
CV (%)	19.2	32.0	16.1	16.7	32.0	35.6	36.3
$\mathrm{LSD}_{0.05}$	6.9	6.5	6.0	1.7	6.7	1.7	1.0

MRW: Marketable root weight, MRN: marketable root number, VV: vine vigor, VW: vine weight

Performance of selected clones in on-farm trials in Rwanda, 2012 B season

Clone	MRW (kg)	MRN	Root yield (t/ha)	SPVD	Altern aria	Vine weight (kg)
RW11-17	3.3	20.5	12.9	2.5	1.0	13.1
RW11-1860	4.7	25.5	9.8	2.0	1.0	2.6
RW11-2419	7.2	40.0	18.7	2.5	1.0	5.3
RW11-2560	2.5	12.5	13.4	1.5	1.0	2.3
RW11-2910	3.9	27.5	8.3	2.0	1.0	3.1
RW11-4923	3.3	17.0	9.1	2.0	1.0	4.0
Check Kwezi	2.5	21.0	6.9	1.0	1.0	2.5
CV (%)	35.1	30.7	24.5	9.2	0.1	35.7
$\mathrm{LSD}_{0.05}$	4.4	31.9	6.7	1.2	0.1	7.3

Quality attributes of the 6 released varieties

Attribute	Variety						
	RW11 -17	RW11 -1860	RW11- 2419	RW11- 2560	RW11- 2910	RW11- 4923	Local check
DMC roots (%)	30.8	37.8	24.9	21.0	31.1	37.3	30.0
DMC vines (%)	17.0	20.7	17.6	20.6	18.3	19.2	18.0
DMY roots (T/ha)	8.3	9.5	6.3	5.4	7.9	9.4	5.4
DMY of vines (T/ha)	4.1	4.8	3.4	2.7	3.9	4.5	2.6
Ratio (R/V)	2.0^*	1.9^*	1.9^*	2.0^*	2.0^*	2.0^*	2.1

DMC: dry matter content; DMY: dry matter yield; R/V: root to vine ratio;

^{*:} high dual purpose variety (R/V ranging from 1.5 to 2.0

Transforming potato & sweetpotato value chains for food and nutrition security

Pedigree of the 6 released varieties

Official name	Farmers' name	Pedigree	Flesh color
RW11-17	Maryoha	Ejumula (open- pollinated)	White
RW11-1860	Giramata	2000-203 (open- pollinated)	White
RW11-2419	Izihirwe	Mugande (Open- pollinated)	White
RW11-2560	Terimbere	SPK004 (open-pollinated)	Deep orange
RW11-2910	Ndamirabana	Gihingumukungu (open-pollinated)	Light orange
RW11-4923	Mbakungahaze	Ukerewe (open- pollinated)	White

Discussions

• CV for MRW (35.1 %) and vine weight (CV=35.7) were generally high

Large plot-to-plot variability

• The six varieties with ratio R/V were released

Discussions (cont'd)

- Based on the ratio R / V (1.5-2.0), six released varieties RW11-17, RW11-1860, RW11-2419, RW11-2560, RW11-2910, RW11-4923 were suitable for dualpurpose use
- Among the 6 released varieties, 2 of them were OFSP: RW11-2910, RW11-2560

Conclusions and recommendations

- The new varieties can be helpful to farmers operating in mixed crop-livestock systems by using vines as animal feed
- These varieties can play a role of both food and feed, especially in areas where land availability is a constraint
- Recommended additional research: To assess cattle preferences and digestibility of forage/ vines for new varieties

Acknowledgements

Rwanda Agriculture Board (RAB)

Alliance for a Green Revolution in Africa (AGRA)

International Potato Center (CIP)

