

Development of fast screening methods to identify drought tolerant sweetpotatoes

R Laurie, SM Laurie & <u>ME</u> <u>Malebana</u>

INTRODUCTION

- Sweetpotato production is affected by climate variability
- Availability of plant material as well as vine survival are key characteristics for successful varieties in drought prone areas
- Quick screening methods needed to select drought tolerant lines/varieties developed

INTRODUCTION (cont)

- It is important to understand the mechanisms of drought tolerance in sweetpotato
- Progress on screening for drought tolerance has been slow due to the complex nature of drought tolerance in plants
- More rapid progress can be aided by prior knowledge of the physiological basis of traits associated with WUE and drought tolerance

INTRODUCTION (cont)

 ARC-VOPI has been screening varieties for drought tolerance at an early stage in the screen-house and correlated the results with drought tolerance at later stages of development in rain out shelters

OBJECTIVES

- To subject various sweetpotato cultivars/lines to water stress conditions
- To study the mechanisms of drought tolerance in popular OFSP and cream-fleshed varieties
- To evaluate varieties/lines for drought tolerance, including landraces in the sub-region reputed to be drought tolerant
- To identify effective quick screening methods for drought tolerance using a combination of physiological, morphological and biochemical methods

MATERIALS AND METHODS

Trial establishment

- Rain-out shelters (large)
 - 4 OFSP x 3 reps x 3 water regimes = 36 plots
 - 18 plants/plot (3 ridges, 1.8 m long spaced 0.8 m apart and 0.3m in row spacing)
 - 3 water regimes (100%, 60% & 30%)
 - Winprobe conductance measurements to monitor soil water depletion
 - Irrigation took place once a 40% depletion of plant available soil water (PAW) at 300 mm depth was detected at the 100 % treatment
 - The 60 % and 30 % treatments received only 60 and 30 % respectively of the amount of water supplied to the 100 % treatment

<u>MATERIALS AND METHODS</u> <u>Trial establishment (cont)</u>

- Small rainout shelter and adjacent field
 - 35 lines/accessions x 2 reps x 2 water regimes
 - Rainout shelter (small) 30% & 60% stressed treatments
 - Adjacent field Irrigated at 100% as soon as 40 % of PAW was depleted
 - 5 plants/plot (1.5 m x 1 m ridge)
 - Watered to allow establishment for 2 weeks, after which water stress was introduced

<u>MATERIALS AND METHODS</u> <u>Trial establishment (cont)</u>

Stressed treatment

Adjacent field trial (abnormal high seasonal rain)

Drought stress trial in RS1 3 regimes 100% - 30% left to right

MATERIALS AND METHODS Physiological measurements

- Large rainout shelter
 - The following measurements were taken monthly:
 - photosynthetically active radiation with a ceptometer whereby LAI is calculated
 - Plant growth analysis was done on 3 plants/plot by measuring stem length and branch formation
 - Leaf samples harvested : ±30 leaves/plot harvested before sunrise for biochemical analysis
 - Leaves frozen at -70°C

MATERIALS AND METHODS Physiological measurements (cont)

- Small rainout shelter and adjacent field
 - End of Feb and April 2010 same measurements done as in large rain out shelter
 - Chlorophyll content and stomatal conductance were measured on the 5th leaf of a selected plant in each replicate
 - Leaf samples harvested : ±30 leaves/plot harvested before sunrise

MATERIALS AND METHODS Agronomical analysis

- Large rainout shelters
 - Harvesting at 5 months after planting: May
 - 4 plants/plot used for the wet/dry mass of top growth
- Small rainout shelters and adjacent field
 - Harvested after 4 months due to late planting: June
 - Wet and dry mass of the top growth were determined for all the plants

MATERIALS AND METHODS Agronomical analysis

- Roots were harvested from all plants and the storage root yield determined
- Wet/dry mass was also determined on the roots

MATERIALS AND METHODS Biochemical analysis

- All the leaf material was freeze-dried to prevent decomposition
- Freeze dried material to be used to determine the absence/presence of antioxidants (Malan, *et al.* 1990; Dalton, *et al.*1986; Elstner & Heupel, 1976)
 - Antioxidants are usually detected in stressed plants

MATERIALS AND METHODS Biochemical analysis (cont)

- The carbon isotope ratio will also be determined
 - Stressed plants develop a preference for carbon 13 over 12
 - Determination of isotopes mass spectrometry
 - Department of Archaelogy (University of Cape Town)

MATERIALS AND METHODS Biochemical analysis (cont)

- Presence of abscisic acid
 - Drought stress increases the abscisic acid content in leaves
 - The stomata close higher concentrations of abscisic acid
 - ELISA (Abscisic Acid Competitive ELISA Assay Kit from Biofords)

MATERIALS AND METHODS Biochemical analysis (cont)

- Root samples to be homogenized and frozen at -70°C to determine the total carotenoid content
 - Total carotenoid contents were shown to increase under stress condition (Bartoli, *et al.*, 1999)
- A larger sample (20 30g) of both leaves and roots will be freeze dried and send to CIP, Lima for NIRS calibration

RESULTS AND DISCUSSION

Trial is still in initial stage with the following results

- Yield decreased with increased water stress
 - Data is being processed for analysis
- Measurements on morphological and physiological parameters have been taken
 - Data is being processed
- Biochemical analysis have not been done
 - Leaf and root tissue are still being dried
- Samples to CIP for NIRS analysis
 - samples still dried

RESULTS AND DISCUSSION

Typical root size at 30% Treatment

Typical root size at 60% Treatment

Way forward

- Complete all the data analysis
- CIP NIRS measurements reference data from 50 samples used for the calibration
- Trials to be repeated for the second year from Sept 2010 with the same layout
- All measurements to be taken as in Year 1

Thank you!!!

