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GENETIC DIVERSITY IS THE FOUNDATION OF BIODIVERSITY

Without genetic diversity and variation - adaptation and evolution cannot occur in natural populations
Without genetic diversity and variation - selection is not possible in breeding populations

It follows that:
GENETIC DIVERSITY IS THE FOUNDATION OF BREEDING

Overview

• Genetic variation and population genetics

• Concept of population• Concept of population

• Hardy-Weinberg principle

• Questions addressed by population geneticists and breeders

• Forces that act on genetic diversity in natural and selected populations

• Quantifying genetic variation

- Within populations: polymorphism and heterozygosity

- Among populations: genetic differentiation, F-statistics

• Calculating genetic distances

- Between genotypes

- Between populations

• Displaying genetic relationships of a group of individuals or populations

• Examples



• Genetic variation can be described at three levels:
1. Genetic variation within individuals (heterozygosity)
2. Genetic differences among individuals (within-population diversity)
3. Genetic differences among populations (genetic differentiation and fixation)

• DNA-markers are tools that allow quantification of diversity at these three 

Genetic variation

• DNA-markers are tools that allow quantification of diversity at these three 
levels

• Population genetics is the discipline that handles these aspects. It 
consist in the study of genetic variation in popula tions and how that 
variation changes over time and space . In other words, how much 
variation exists in natural populations, and how can we explain variation 
in terms of origin, maintenance, and evolutionary processes?



Several definitions available

• Ecology: a group of individuals of the same species that occur in the same habitat area at 
the same time (sometimes called a provenance, usually ‘isolated’ from similar groups of the 
same species)

• Genetics: an interbreeding group of individuals

Population

Population size

• Census size N: the number of individuals
• Effective population size Ne: the number of individuals that stand an equal chance to mate 

and pass their genes to the next generation (smaller than the census size N)
Ne < N

due to skewed sex ratios, some non-breeders, some degree of inbreeding, variation in 
progeny survival; depends on the genetic parameter and the generation considered

Ne = N if all individuals in population have equal probability of being parents of any individual of 
the next generation (requires panmixia, no overlapping generations, no migration, etc.)



� Hardy-Weinberg principle is a model that relates allele frequencies to genotype frequencies
� central concept in traditional genetic diversity and differentiation models; independently formulated in 1908 by the 

mathematician Godfrey H. Hardy and physician Wilhelm Weinberg

Based on five basic assumptions
� population is infinitely large - no effects of genetic drift, no chance effects
� mating is random - no internal ‘structure’
� no (natural) selection - at least for the traits under study
� no mutation – no new alleles
� no migration – no ‘import’ of alleles from other populations

Hardy-Weinberg principleHardy Weinberg principle

� no migration – no ‘import’ of alleles from other populations
If these assumptions are met, the population will be in genetic equilibrium (H-W equilibrium).

Makes two predictions (if assumptions met)
� allele frequencies do not change over generations
� after one generation  of random mating (i.e., zygotes form by random combinations of gametes, in proportion to the 

abundance of the alleles in the population), the genotypic frequencies will be:

p2 (frequency of genotype AA)
2pq (frequency of genotype Aa)
q2 (frequency of genotype aa)

p = allelic frequency of A
q = allelic frequency of a

p2 + 2pq + q2 = 1



Frequencies of genotypes AA, Aa, and aa relative to the frequencies of alleles A and a  in 
populations at Hardy-Weinberg equilibrium 

Hardy-Weinberg principle

p = 0
A allele lost

p= 1
A allele fixed

Hardy Weinberg principle

Max. heterozygosity
p = q = 0.5

q = 1
a allele fixed

q = 0
a allele lost



� H-W describes the properties of an ‘ideal population’, but real populations 
are rarely in H-W equilibrium :

• Mutations may create new alleles
• Selection may favor particular alleles or genotypes
• Mating may be not- random => genotype frequencies will deviate from 

expectation

Hardy-Weinberg principleHardy Weinberg principle

expectation
• Population is finite => random changes in allele frequencies will 

happen; this is called genetic drift
• Immigrants (i.e. by seed or by pollen) may import alleles with different 

frequencies, or new alleles

� How to check for H-W equilibrium?
• test observed and expected genotype proportions with a goodness of fit 

test, such as a chi-square test
• if deviation is significant, begin to determine which of the five 

assumptions of the Hardy-Weinberg law are violated



Migration (-)
Genetic drift (+)

Local adaptation (+)
Differential selection (+)

Migration (+)
Mutation (+)

Genetic drift (-)
Local adaptation (-)

Selection (-)
Non-random mating (-)

Forces that act on genetic diversity

Forces that destroy H-W equilibrium are the forces that act on genetic diversity

Forces that act on genetic diversity

Differential selection (+)
Non-random mating (+)

Among 
Populations

Within 
Populations



� How much variation is contained in (natural) population(s)?

� What processes control and influence the observed variation?

� If two populations are differentiated (= genetically different), what forces 
are responsible for divergence among populations?

� How do demographic factors (such as breeding system, fecundity, 
changes in population size, and age structure) influence the gene pool in 
the population?

Questions addressed by population geneticists

the population?

� Which are the genetic relationships among different accessions in 
genebanks or in breeding populations?

� Definition of ‘core collections’ in genebanks

� What genes were influenced by crop domestication?

� …….



� Polymorphism (PLP): % of polymorphic loci; proportion of markers that are polymorphic
– Usually a locus is considered polymorphic if the frequency of the most common allele is less than 

95%
– If  20 out of 50 marker loci sampled in a population have an allelic frequency of > 95% for a single 

allele, PLP=30/50 = 60%

� Allelic richness (Ar): number of alleles at a locus – standardized measures have been 
developed considering the number of individuals sampled in the population

� Heterozygosity : percentage of loci at which the average individual is heterozygous

Quantifying genetic variation within populations

average observed heterozygosity HO = mean frequency of heterozygotes
observed at a particular locus averaged over all loci surveyed

average expected heterozygosity He ; calculated by subtracting from 1 the expected 
frequency of homozygotes at a locus; averaged over all loci

calculation of the expected heterozygosity :

• locus j with two alleles (a and A) h j = 1 – pa
2 – pA

2

• locus j with i alleles (p denotes the allelic frequency) h j = 1 – ∑ p i
2

• averaged over several loci (L = number of loci) He = ∑ h j/L



Calculate the expected heterozygosity for different values of p, p being the 
more common of the 2 alleles

Hj in a two-allele system

p q h
0.5
0.6
0.70.7
0.8
0.9



Calculate the expected heterozygosity for different values of p, p being the 
more common of two alleles

Hj in a two-allele system

p q p2 q2 1-p2-q2

0.5 0.5 0.25 0.25 0.50
0.6 0.4 0.36 0.16 0.48

p q 1-p2-q2

0.5 0.5 0.50
0.55 0.45 0.50
0.6 0.4 0.48
0.65 0.35 0.46

0,4

0,5

0,6

0.6 0.4 0.36 0.16 0.48
0.7 0.3 0.49 0.09 0.42
0.8 0.2 0.64 0.04 0.32
0.9 0.1 0.81 0.01 0.18

0.65 0.35 0.46
0.7 0.3 0.42
0.75 0.25 0.38
0.8 0.2 0.32
0.85 0.15 0.26
0.9 0.1 0.18
0.95 0.05 0.10
0.99 0.01 0.02

=> between p=0.5 and p=0.75 slow change of heterozygosity, beyond more rapid decrease

0

0,1

0,2

0,3

0,5 0,6 0,7 0,8 0,9 1

1-p2-q2 



Calculate the expected heterozygosity for different numbers of 
alleles/locus, with equal frequencies for each allele!

Hj with more alleles

i pi hj

2 0.5
44
5

10
100



Calculate the expected heterozygosity for different numbers of alleles, with 
equal frequencies for each allele!

Hj with more alleles

i pi pi
2 Ɖpi

2 1-Ɖpi
2

2 0.5 0.25 0.5 0.5
4 0.25 0.062 0.25 0.75
5 0.2 0.04 0.2 0.8

10 0.1 0.01 0.1 0.9

p1 p2 p1
2 p2

2 1-Ɖpi
2

0.6 0.4 0.36 0.16 0.48

0.7 0.3 0.49 0.09 0.42

In general terms:

hmax=1

� More alleles at a locus mean a higher level of expected heterozygosity

� The expected heterozygosity is higher when the frequencies of the different alleles 

at a locus are equal (~ evenness)

10 0.1 0.01 0.1 0.9
100 0.01 0.001 0.01 0.99

0.8 0.2 0.64 0.04 0.32

0.9 0.1 0.81 0.01 0.18



Locus A

Locus B

Locus C
Locus D

e.g. SSR

HO: co-dominant data

Locus E

Locus D

Locus A

Locus E

Locus B
Locus C
Locus D

Average observed heterozygosity Ho = [(4/30)+(3/30)+(0/30)+(0/30)+(8/30)]/5=0.1



Locus Data analysis allele frequency H j (1-p2-q2) He

A genotypes A1A1 A1A2 A2A2 total p q

gen. freq. (exp.) p2 2pq q2 1

individuals (no.) 2 4 24 30

gen. freq. (obs.) 0.07 0.13 0.8 1 8/60= 
0.13

52/60=
0.87

0.23

Genetic diversity: co-dominant data
Average observed heterozygosity Ho = 0.1

Average expected heterozygosity He

0.13 0.87

B genotypes B1B1 B1B2 B2B2 total

gen. freq. (exp.) p2 2pq q2 1

individuals (no.) 7 3 20 30

gen. freq. (obs.) 0.23 0.1 0.67 1 17/60=
0.28

43/60=
0.72

0.41

E genotypes E1E1 E1E2 E2E2 total

gen. freq. (exp.) p2 2pq q2 1

individuals (no.) 15 8 7 30

gen. freq. (obs.) 0.5 0.27 0.23 1 38/60=
0.63

22/60=
0.37

0.46 0.22



Locus A

Locus E

Locus B
Locus C

Locus D

dominant data, e.g. AFLP

HO : dominant data

Locus E

Locus A

Locus E

Locus B
Locus C
Locus D

1 = fragment present in two copies (homozygote dominant) or in one copy (heterozygote)
0 = fragment absent (homozygote recessive)

with dominant data: observed heterozygosity cannot be estimated



Locus Data analysis allele frequency 1-p2-q2 He

A genotypes AA Aa aa total p q

gen. freq. (exp.) p2 2pq q2 1

individuals (no.) 6 24 30

gen. freq. (obs.) 0.2 0.8 1 0.11 0.89 0.19

Genetic diversity: dominant data

Average expected heterozygosity He

Average observed heterozygosity Ho ????

B genotypes BB Bb bb total

gen. freq. (exp.) p2 2pq q2 1

individuals (no.) 10 20 30

gen. freq. (obs.) 0.33 0.67 1 0.18 0.82 0.30

E genotypes EE Ee ee total

gen. freq. (exp.) p2 2pq q2 1

individuals (no.) 23 7 30

gen. freq. (obs.) 0.77 0.23 1 0.52 0.48 0.50 0.198

Expected heterozygosity can be calculated because we assume H-W



Heterozygosity is ‘hypothetical’: refers to the probability that individuals 
would be heterozygous

� The concept of heterozygosity can be extended from a single 

Quantifying genetic variation among populations

� The concept of heterozygosity can be extended from a single 
population to multiple populations 

� The probability that two genes at a given locus, drawn at random from 
two or more populations, are different (heterozygous) => 
heterozygosity



• Consider 2 populations (A and B) of the same size
• We can estimate the heterozygosity in A, in B and in the combined population (AB)

- typically H will be higher in AB than in A or B separately

If p i is the frequency of a given allele in the total sample o f plants (AB) , the allele frequency pi will be higher (+d) or lower (-
d) in each subpopulation, with d = difference between populations

e.g., A: pi+d and B: pi-d

1. Homozygosity in the total AB population = probability to draw the same allele from A and B: 

(p +d)(p -d)= p 2-d2

Genetic differentiation

(pi+d)(pi-d)= pi
2-d2

The average heterozygosity between the subpopulations is then

(remember hj = 1 – ∑ pi
2)

HD=1-Ɖpi
2+Ɖd2 

2. Homozygosity within the subpopulations is

A: (pi+d)2 =pi
2+d2+2pid  //// B: (pi-d)2 =pi

2+d2-2pid ⇒ average pi
2+d2

The average heterozygosity within the subpopulations is then

HS=1-Ɖpi
2-Ɖd2 

⇒ Heterozygosity is 2Ɖd2 greater between the two populations than within them



We define then:

Heterozygosity in the total population as: HT=1-Ɖpi
2

Heterozygosity within the subpopulations: HS=1-Ɖpi
2-Ɖd2 

It follows: HT=HS+Ɖd2

Genetic differentiation

As a result, the total genetic variation can be partitioned into within / between / 
among subpopulations (with d or DST = the difference in diversity between 
populations)

HT

pop1
HS

pop3
HS

pop2
HS

DST

DST

DST



Fixation index FST measures the reduction in heterozygosity (H) expected 
with non-random mating at any one level of population hierarchy 
relative to another more inclusive hierarchical level

Sewall Wright‘s FST

FST = (HTotal - Hsubpop )/HTotal



FST= 1 – (HS/HT) 
FIT = 1 – (HI/HT)
FIS = 1 – (HI/HS)

with
HT = expected heterozygosity in the total population as estimated from pooled allele 

frequencies
HI = average observed heterozygosity in a group of populations
H = average expected heterozygosity estimated for each subpopulation

Genetic differentiation: F statistics (Sewall Wright)

HS = average expected heterozygosity estimated for each subpopulation

FIT / FIS = the deficiency or excess of heterozygotes in a group of populations / each 
subpopulation

FST           = degree of gene differentiation among populations

FST ranges between 0 and 1
= 0 ⇒ no genetic differentiation
0 – 0.05 ⇒ little differentiation
0.05 – 0.15  ⇒ moderate genetic differentiation
0.15 – 0.25 ⇒ large genetic differentiation
> 0.25 ⇒ very large genetic differentiation
= 1.0 ⇒ populations fixed for alternate/different alleles 



Genotype frequency

A1A1 A1A2 A2A2 pi qi 2 pi qi F

Pop 1 0.4 0.3 0.3 0.55 0.45 0.4950 0.3939

Pop 2 0.6 0.2 0.2 0.70 0.30 0.4200 0.5238

HT 2(0.625)(0.375) = 0.4688 pO (0.55 + 0.70)/2 = 0.625

H (0.3 + 0.2)/2 = 0.25 q (0.45 + 0.30)/2 = 0.375

expected

observed

F fixation index: Hexp-Hobs/Hexp2 populations, 1 locus with 2 alleles

Genetic differentiation: F statistics

HI (0.3 + 0.2)/2 = 0.25 qO (0.45 + 0.30)/2 = 0.375

HS (0.495 + 0.420)/2 = 0.4575

FIT = 1 – (0.25/0.4688) = 0.4667

FIS = 1 – (0.25/0.4575) = 0.4536

FST = 1 – (0.4575/0.4688) = 0.0241

� low differentiation in allele frequencies among populations
� all the heterozygote deficit due to nonrandom mating within the populations

observed

expected



Genetic distance can be any quantitative measure of genetic difference, be it at the 
sequence level or the allele frequency level that is calculated between individuals, 
populations or species

Refers to the genetic elements (alleles, genes, genotypes) that the two samples do not
share

D = 1 – s

Calculating genetic distances

distance D = 1 when the two samples have no genetic elements in common
similarity index s= 0 when the two samples have no genetic elements in common

Possible applications:
� establish relatedness of individuals in breeding pool? (inter-genotype similarities)
� study distance among populations? (inter-population differences)

Steps:
� Calculation of genetic similarity/distance matrix 
� Analysis of GS/GD matrix using clustering algorithm(s)
� Graphical presentation and interpretation



describe the diversity
� within a population or between populations
� may extend to larger units, such as areas and 

regions

Patterns of genetic variation: general approach

calculate relationships between the entities 
� calculate the distances (geometric or 

genetic) among all pairs of subjects in 
the study

express the relationships 
� any classification and/or ordination method
� possible to compare the results of molecular 

study with other data (e.g. geographical) 



Similarity indices for dominant data

Simple Matching coefficient, 
or simple concordance coefficient: (a + d)/(a + b + c + d)

Jaccard coefficient
(absent data are treated as missing): a/(a + b + c)

Nei-Li coefficient, or Dice: 2a/(2a + b + c)

Genetic distance: between genotypes

Nei-Li coefficient, or Dice: 2a/(2a + b + c)

Indiv. i

1 0

Indiv.j

1 a c

0 b d

individual i individual j count condition
present 1 present 1 a positive match
present 1 absent 0 b mismatch
absent 0 present 1 c mismatch
absent 0 absent 0 d negative match



Similarity indices for co-dominant data

e.g., Roger’s distance

where:
Xai = frequency of allele a for individual i

= 0 if allele not present

Genetic distance: between genotypes

= 0 if allele not present
= 0.5 if allele present in one copy  
= 1 if allele present in two copies

for comparison: Euclidean distance



Nei‘s genetic distance Dxy between populations i and j:

Dxy = -ln (I xy) with

Genetic distance: between populations

with Ixy = genetic identity
JX = average homozygosity in population X
JY = average homozygosity in population Y
JXY = average interpopulation homozygosity



pop1 pop2 pop3
A A1 0.8 0.74 0.65

A2 0.2 0.26 0.35

Locus heterozygosity hijk 0.32 0.3848 0.455

B B 0.86 0.81 1

example:  3 populations (i), 13 loci (j)  and # no. alleles/locus (k)
10 monomorphic and 3 polymorphic loci 

Genetic distance: calculating Nei‘s genetic
distance

B B1 0.86 0.81 1

B2 0.01 0.1 0

B3 0.13 0.09 0

Locus heterozygosity hijk 0.2434 0.3258 0

D D1 0 1 0.3

D2 1 0 0.7

Locus heterozygosity hijk 0 0 0.42

Average heterozygosity H i 0.0433 0.0547 0.0673

Average homozygosity J i 0.9567 0.9453 0.9327

Average interpop homozygosity J ii’ J1,2=0.8733 J1,3=0.9346 J2,3=0.8986

Genetic identity I ii’ I1,2=0.9183 I1,3=0.9894 I2,3=0.9570

Genetic distance D ii’ D1,2=0.0852 D1,3=0.0107 D2,3=0.0440



• Groups individuals or objects (i.e. populations) based on their similarity relationships, 
so that 

• Objects with similar descriptions are mathematically gathered into the same cluster

1. hierarchical methods
group similar entities (individuals or populations) together into classes, and 
arrange the classes into a hierarchy
1. nearest neighbour = single linkage

Displaying relationship: cluster analysis

1. nearest neighbour = single linkage
2. furtherst neighbour = complete linkage
3. UPGMA = average linkage

2. non-hierarchical methods
groups similar entities (individuals or populations) together into classes without 
hierarchical structure
1. PCA
2. PCO

3. model-based methods 
1. maximum likelihood
2. Bayesian methods



simple linkage – ‘nearest neighbour’
�minimizes the inter-group distance by taking the distance to the neighbour with the 

highest similarity
�works with regular and compact groups, but is highly influenced by distant individuals
� inconvenient when there are different groups that are not well distributed in 

(mathematical) space

complete linkage – ‘farthest neighbour’

Neighbours

complete linkage – ‘farthest neighbour’
�minimizes the inter-group distance by taking the distance to the individual with minimal 

similarity
�works well with regular and compact groups but, again, it is influenced by distant 

individuals



UPGMA = unweigthed pair-group average using arithmetic means (average linkage)
�minimizes the inter-group distance by taking the average pairwise distance

among all individuals of the sample
�frequently used method

1. matrix of distances among individuals or genotypes
2. find the smallest distance; these two entities (B and E) form a first cluster

UPGMA

2. find the smallest distance; these two entities (B and E) form a first cluster

A B C D E F G 
A - 63 94 111 67 23 107
B 63 - 79 96 16 58 92
C 94 79 - 47 83 89 43
D 111 96 47 - 100 106 20
E 67 16 83 100 - 62 96
F 23 58 89 106 62 - 102
G 107 92 43 20 96 102 -



3. calculate the similarity of the newly created cluster to the rest of the 
entities as the the mean of the similarities of B and E

4. find the smallest distance in this matrix and merge the new entity into
the cluster (DG)

A C D F G BE

UPGMA

A C D F G BE
A - 94 111 23 107 65
C 94 - 47 89 43 81
D 111 47 - 106 20 98
F 23 89 106 - 102 60
G 107 43 20 102 - 94

BE 65 81 98 60 94



A C F BE DG
A - 94 23 65 109
C 94 - 89 81 45
F 23 89 - 60 104

BE 65 81 60 96
DG 109 45 104 96

Hierarchical clustering: UPGMA



Hierarchical clustering : UPGMA

C BE DG AF
C 81 34 92

BE 81 96 63
DG 34 96 107

Hierarchical clustering: UPGMA

DG 34 96 107
AF 92 63 107



Hierarchical clustering : UPGMA

BE DGC AF
BE 91 63

DGC 91 102
AF 63 102

A F B E D G C

Hierarchical clustering: UPGMA

A F B E D G C



PCA: Principal components analysis

To represent a multidimensional dataset (including n 
individuals and m characteristics) into a reduced 
number of dimensions (e.g. 2 or 3-dimensional plot)

PCA

number of dimensions (e.g. 2 or 3-dimensional plot)

PCA can be used for dimensionality reduction in a data set 
by retaining those characteristics of the data set that 
contribute most to its variance



How?

• By linear transformation of the original m variables into a new 
set of uncorrelated (orthogonal) variables: principal 

PCAPCA

set of uncorrelated (orthogonal) variables: principal 
components

• The principal components are used as a new coordinate
system such that the greatest variance by any projection of the 
data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the 
second coordinate, and so on.



1/ Calculate correlation or covariance matrix between the characters in 
the datamatrix

2/ Eigenanalysis of this matrix. The eigenvectors with the largest
eigenvalues correspond to the dimensions that have the strongest 
correlation in the data set

PCAPCA

3/ Convert the original data onto this new coordinate system using the 
eigenvectors



Example

i Eigenvalue Percent of variance Cumulative

1 181.93252427 72.4831 72.4831

2 5.49418088 2.1889 74.6720

3 4.60785573 1.8358 76.5078 ⇒

77 %  of the total variance
can be visualized in 3 
dimensions

PCAPCA

4 4.27376157 1.7027 78.2105

5 2.85174878 1.1362 79.3466

6 2.54575460 1.0142 80.3609

7 2.22088287 0.8848 81.2457

dimensions



PCO: Principal co-ordinate analysis

Variant of PCA, starts from a dissimilarity/distance matrix to calculate the 
eigenvalues

PCOPCO



⇒ Huang et al 
(2002)

AFLP in sweetpotato and wild relatives



⇒ Huang et al (2002)

AFLP in sweetpotato and wild relatives



Wheat (allohexaploid)
⇒ Low genetic diversity at most genetic loci (using DNA-markers)
⇒ However, prone to mutation and easy to cross with other species (many disease resistances 

obtained by inter-specific crosses)
⇒ High phenotypic diversity revealed and exploited by farmers and breeders worldwide
⇒ Balfourier et al (2007)

⇒ INRA Clermont-Ferrand collection of more than 10,000 accessions of hexaploid wheat
⇒ Morphologically well-characterized
⇒

Management of germplasm collections

⇒ Is it necessary to keep all these accessions or can we preserve the same amount of genetic diversity 
with a smaller number of plants?

⇒ DNA-markers (SSRs) can assist to create a Core collection

A core collection is a subset of a larger germplasm
collection that contains the maximum possible 
genetic diversity of the species with a minimum of 
repetitiveness

• Several possibilities
• M strategy: genetic markers are used to sample the collection 

while maximizing allele richness at each marker locus





The core collection of 372 accessions:
1. contains the same number of alleles 

(estimate of the diversity present) as 
the collection of 3942 accessions,

2. all geographical regions are 
represented

3. contains all unique alleles (present 
only in one of the 3,942 plants); 
restriction imposed by the authors



North-American

South-American / African

Far-Eastern

Near-Eastern / Central Asian

SSR- based genetic relationships among 
geographical origins for the 372 accessions 
included in the core collection

North-European

Mediterranean
South-East European

Australia / NZL


