

Analysis of genetic diversity with molecular markers

Isabel Roldán-Ruiz August 2012

GENETIC DIVERSITY IS THE FOUNDATION OF BIODIVERSITY

Without genetic diversity and variation - adaptation and evolution cannot occur in natural populations Without genetic diversity and variation - selection is not possible in breeding populations

It follows that: GENETIC DIVERSITY IS THE FOUNDATION OF BREEDING

- Genetic variation and population genetics
- Concept of population
- Hardy-Weinberg principle
- Questions addressed by population geneticists and breeders
- Forces that act on genetic diversity in natural and selected populations
- Quantifying genetic variation
 - Within populations: polymorphism and heterozygosity
 - Among populations: genetic differentiation, F-statistics
- Calculating genetic distances
 - Between genotypes
 - Between populations
- Displaying genetic relationships of a group of individuals or populations
- Examples

Genetic variation

- Genetic variation can be described at three levels:
 - 1. Genetic variation within individuals (heterozygosity)
 - 2. Genetic differences among individuals (within-population diversity)
 - 3. Genetic differences among populations (genetic differentiation and fixation)
- DNA-markers are tools that allow quantification of diversity at these three levels
- Population genetics is the discipline that handles these aspects. It consist in the study of genetic variation in populations and how that variation changes over time and space. In other words, how much variation exists in natural populations, and how can we explain variation in terms of origin, maintenance, and evolutionary processes?

Population

Several definitions available

- Ecology: a group of individuals of the same species that occur in the same habitat area at the same time (sometimes called a provenance, usually 'isolated' from similar groups of the same species)
- Genetics: an **interbreeding** group of individuals

Population size

- Census size N: the number of individuals
- Effective population size N_e: the number of individuals that stand an equal chance to mate and pass their genes to the next generation (smaller than the census size N)

N_e < N

due to skewed sex ratios, some non-breeders, some degree of inbreeding, variation in progeny survival; depends on the genetic parameter and the generation considered

N_e = N if all individuals in population have equal probability of being parents of any individual of the next generation (requires panmixia, no overlapping generations, no migration, etc.)

Hardy Weinberg principle

- ✓ Hardy-Weinberg principle is a model that relates **allele** frequencies to **genotype** frequencies
- central concept in traditional genetic diversity and differentiation models; independently formulated in 1908 by the mathematician Godfrey H. Hardy and physician Wilhelm Weinberg

Based on five basic assumptions

- ✓ population is infinitely large no effects of genetic drift, no chance effects
- ✓ mating is random no internal 'structure'
- ✓ no (natural) selection at least for the traits under study
- ✓ no mutation no new alleles
- ✓ no migration no 'import' of alleles from other populations

If these assumptions are met, the population will be in genetic equilibrium (H-W equilibrium).

Makes two predictions (if assumptions met)

- ✓ allele frequencies do not change over generations
- ✓ after one generation of random mating (i.e., zygotes form by random combinations of gametes, in proportion to the abundance of the alleles in the population), the genotypic frequencies will be:

p ²	(frequency of genotype AA)
2pq	(frequency of genotype Aa)
q ²	(frequency of genotype aa)

p = allelic frequency of Aq = allelic frequency of a

$$p^2 + 2pq + q^2 = 1$$

Hardy Weinberg principle

Frequencies of genotypes AA, Aa, and aa relative to the frequencies of alleles A and a in populations at Hardy-Weinberg equilibrium

Hardy Weinberg principle

 H-W describes the properties of an 'ideal population', but real populations are rarely in H-W equilibrium:

- <u>Mutations</u> may create new alleles
- <u>Selection may favor particular alleles or genotypes</u>
- <u>Mating may be not- random</u> => genotype frequencies will deviate from expectation
- Population is <u>finite</u> => random changes in allele frequencies will happen; this is called genetic drift
- <u>Immigrants</u> (i.e. by seed or by pollen) may import alleles with different frequencies, or new alleles
- ✓ How to check for H-W equilibrium?
 - test observed and expected genotype proportions with a goodness of fit test, such as a chi-square test
 - if deviation is significant, begin to determine which of the five assumptions of the Hardy-Weinberg law are violated

Forces that act on genetic diversity

Forces that destroy H-W equilibrium are the forces that act on genetic diversity

Questions addressed by population geneticists

- ✓ How much variation is contained in (natural) population(s)?
- ✓ What processes control and influence the observed variation?
- ✓ If two populations are differentiated (= genetically different), what forces are responsible for divergence among populations?
- How do demographic factors (such as breeding system, fecundity, changes in population size, and age structure) influence the gene pool in the population?
- ✓ Which are the genetic relationships among different accessions in genebanks or in breeding populations?
- ✓ Definition of 'core collections' in genebanks
- ✓ What genes were influenced by crop domestication?
- ✓

Quantifying genetic variation within populations

- ✓ **Polymorphism** (PLP): % of polymorphic loci; proportion of markers that are polymorphic
 - Usually a locus is considered polymorphic if the frequency of the most common allele is less than 95%
 - If 20 out of 50 marker loci sampled in a population have an allelic frequency of > 95% for a single allele, PLP=30/50 = 60%
- Allelic richness (Ar): number of alleles at a locus standardized measures have been developed considering the number of individuals sampled in the population
- ✓ **Heterozygosity**: percentage of loci at which the average individual is heterozygous

<u>average observed heterozygosity</u> H_0 = mean frequency of heterozygotes observed at a particular locus averaged over all loci surveyed

<u>average expected heterozygosity</u> H_e ; calculated by subtracting from 1 the expected frequency of homozygotes at a locus; averaged over all loci

calculation of the expected heterozygosity:

- locus j with two alleles (a and A)
- locus j with i alleles (p denotes the allelic frequency)
- averaged over several loci (L = number of loci)

H_i in a two-allele system

Calculate the expected heterozygosity for different values of p, p being the more common of the 2 alleles

р	q		h
0.5			
0.6			
0.7			
0.8			
0.9			

H_i in a two-allele system

Calculate the expected heterozygosity for different values of p, p being the more common of two alleles

=> between p=0.5 and p=0.75 slow change of heterozygosity, beyond more rapid decrease

H_i with more alleles

Calculate the expected heterozygosity for different numbers of alleles/locus, with equal frequencies for each allele!

i	p _i		h _i
2	0.5		,
4			
5			
10			
100			

H_i with more alleles

Calculate the expected heterozygosity for different numbers of alleles, with equal frequencies for each allele!

· ·		•	7	4 T 0
i	p _i	p _i ²	۲p _i 2	1-Հp _i 2
2	0.5	0.25	0.5	0.5
4	0.25	0.062	0.25	0.75
5	0.2	0.04	0.2	0.8
10	0.1	0.01	0.1	0.9
100	0.01	0.001	0.01	0.99

p ₁	p ₂	p ₁ ²	p ₂ ²	1-Σp,²
0.6	0.4	0.36	0.16	0.48
0.7	0.3	0.49	0.09	0.42
0.8	0.2	0.64	0.04	0.32
0.9	0.1	0.81	0.01	0.18

In general terms:

- ✓ More alleles at a locus mean a higher level of expected heterozygosity
- ✓ The expected heterozygosity is higher when the frequencies of the different alleles at a locus are equal (~ evenness)

H_o: co-dominant data

Average observed heterozygosity $H_0 = [(4/30)+(3/30)+(0/30)+(0/30)+(8/30)]/5=0.1$

Genetic diversity: co-dominant data

Average observed heterozygosity $H_o = 0.1$

Average expected heterozygosity H_e

Locus	Data analysis					allele fr	equency	H _j (1-p²-q²)	H _e
А	genotypes	A ₁ A ₁	A_1A_2	A_2A_2	total	р	q		
	gen. freq. (exp.)	p²	2pq	q²	1				-
	individuals (no.)	2	4	24	30				
	gen. freq. (obs.)	0.07	0.13	0.8	1	8/60= 0.13	52/60= 0.87	0.23	
В	genotypes	B ₁ B ₁	B ₁ B ₂	B ₂ B ₂	total				
	gen. freq. (exp.)	p²	2pq	q²	1				
	individuals (no.)	7	3	20	30				
	gen. freq. (obs.)	0.23	0.1	0.67	1	17/60= 0.28	43/60= 0.72	0.41	
E	genotypes	E ₁ E ₁	E ₁ E ₂	E ₂ E ₂	total		<u>.</u>	<u></u>	
	gen. freq. (exp.)	p²	2pq	q ²	1				
	individuals (no.)	15	8	7	30				
	gen. freq. (obs.)	0.5	0.27	0.23	1	38/60= 0.63	22/60= 0.37	0.46	0.22

H_o: dominant data

dominant data, e.g. AFLP

1 = fragment present in two copies (homozygote dominant) or in one copy (heterozygote)0 = fragment absent (homozygote recessive)

with dominant data: observed heterozygosity cannot be estimated

Genetic diversity: dominant data

Average observed heterozygosity H_o ????

Average expected heterozygosity $\rm H_{e}$

Locus	Data analysis					allele fr	equency	1-p²-q²	H _e
А	genotypes	AA	Aa	аа	total	р	q		
	gen. freq. (exp.)	p²	2pq	q ²	1		-		
	individuals (no.)	(5	24	30				
	gen. freq. (obs.)	0	.2	0.8	1	0.11	0.89	0.19	
В	genotypes	BB	Bb	bb	total				
	gen. freq. (exp.)	p²	2pq	q ²	1				
	individuals (no.)	1	0	20	30				
	gen. freq. (obs.)	0.	33	0.67	1	0.18	0.82	0.30	
E	genotypes	EE	Ee	ee	total				
	gen. freq. (exp.)	p²	2pq	q ²	1				
	individuals (no.)	2	3	7	30				
	gen. freq. (obs.)	0.	77	0.23	1	0.52	0.48	0.50	0.198

Expected heterozygosity can be calculated because we assume H-W

Quantifying genetic variation among populations

Heterozygosity is 'hypothetical': refers to the probability that individuals would be heterozygous

- The concept of heterozygosity can be extended from a single population to multiple populations
- The probability that two genes at a given locus, drawn at random from two or more populations, are different (heterozygous) => heterozygosity

Genetic differentiation

- Consider 2 populations (A and B) of the same size
- We can estimate the heterozygosity in A, in B and in the combined population (AB)
 - typically H will be higher in AB than in A or B separately

If p_i is the frequency of a given allele in the total sample of plants (AB), the allele frequency p_i will be higher (+d) or lower (-d) in each subpopulation, with d = difference between populations

e.g., A: p_i+d and B: p_i-d

1. Homozygosity in the total AB population = probability to draw the same allele from A and B:

 $(p_i+d)(p_i-d)=p_i^2-d^2$

The average heterozygosity between the subpopulations is then

(remember $h_j = 1 - \sum p_i^2$) $H_D = 1 - \sum p_i^2 + \sum d^2$

2. Homozygosity within the subpopulations is

A: $(p_i+d)^2 = p_i^2 + d^2 + 2p_i d //// B$: $(p_i-d)^2 = p_i^2 + d^2 - 2p_i d \Rightarrow average p_i^2 + d^2$

The average heterozygosity within the subpopulations is then

$$H_s=1-\Sigma p_i^2-\Sigma d^2$$

 \Rightarrow Heterozygosity is $2\Sigma d^2$ greater between the two populations than within them

Genetic differentiation

We define then:

Heterozygosity in the total population as: $H_T = 1 - \Sigma p_i^2$

Heterozygosity within the subpopulations: $H_s=1-\Sigma p_i^2-\Sigma d^2$

It follows:

 $H_T = H_S + \Sigma d^2$

As a result, the total genetic variation can be partitioned into within / between / among subpopulations (with d or D_{ST} = the difference in diversity between populations)

Sewall Wright's F_{ST}

<u>Fixation index</u> F_{ST} measures the reduction in heterozygosity (*H*) expected with non-random mating at any one level of population hierarchy relative to another more inclusive hierarchical level

 $\mathbf{F}_{\text{ST}} = (\mathbf{H}_{\text{Total}} - \mathbf{H}_{\text{subpop}})/\mathbf{H}_{\text{Total}}$

Genetic differentiation: F statistics (Sewall Wright)

$$\begin{split} F_{ST} &= 1 - (H_S/H_T) \\ F_{IT} &= 1 - (H_I/H_T) \\ F_{IS} &= 1 - (H_I/H_S) \end{split}$$

with

- $H_T = \frac{\text{expected}}{\text{frequencies}}$ heterozygosity in the total population as estimated from pooled allele
- H_I = average observed heterozygosity in a group of populations
- H_s = average expected heterozygosity estimated for each subpopulation
- F_{IT} / F_{IS} = the deficiency or excess of heterozygotes in a group of populations / each subpopulation
- F_{ST} = degree of gene differentiation among populations

F_{ST} ranges between 0 and 1

= 0	\Rightarrow no genetic differentiation
0 - 0.05	\Rightarrow little differentiation
0.05 – 0.15	\Rightarrow moderate genetic differentiation
0.15 – 0.25	\Rightarrow large genetic differentiation
> 0.25	\Rightarrow very large genetic differentiation
= 1.0	\Rightarrow populations fixed for alternate/different alleles

Genetic differentiation: F statistics

2 populations, 1 locus with 2 alleles

F fixation index: Hexp-Hobs/Hexp

		Gen	otype freq	uency				
		A ₁ A ₁	A_1A_2	A_2A_2	p _i	q _i	2 p _i q _i	F
	Pop 1	0.4	0.3	0.3	0.55	0.45	0.4950	0.3939
	Pop 2	0.6	0.2	0.2	0.70	0.30	0.4200	0.5238
expected	Η _τ	2(0.625)(2(0.625)(0.375) = 0.4688			(0.55 + 0	.70)/2 = 0.0	625
observed	H	(0.3 + 0.2)/2 = 0.25			q o	(0.45 + 0	.30)/2 = 0.3	375
expected	H _s	(0.495 +	0.420)/2 =	0.4575				

 $F_{IT} = 1 - (0.25/0.4688) = 0.4667$ $F_{IS} = 1 - (0.25/0.4575) = 0.4536$ $F_{ST} = 1 - (0.4575/0.4688) = 0.0241$

 \checkmark low differentiation in allele frequencies among populations

 \checkmark all the heterozygote deficit due to nonrandom mating within the populations

Calculating genetic distances

Genetic distance can be any quantitative measure of <u>genetic difference</u>, be it at the sequence level or the allele frequency level that is calculated between individuals, populations or species

Refers to the genetic elements (alleles, genes, genotypes) that the two samples do <u>not</u> share

D = 1 - s

distance D = 1 when the two samples have no genetic elements in common similarity index s= 0 when the two samples have no genetic elements in common

Possible applications:

- ✓ establish relatedness of individuals in breeding pool? (inter-genotype similarities)
- ✓ study distance among populations? (inter-population differences)

Steps:

- ✓ Calculation of genetic similarity/distance matrix
- ✓ Analysis of GS/GD matrix using clustering algorithm(s)
- ✓ Graphical presentation and interpretation

Patterns of genetic variation: general approach

describe the diversity

- within a population or between populations
- may extend to larger units, such as areas and regions

calculate relationships between the entities

 calculate the distances (geometric or genetic) among all pairs of subjects in the study

express the relationships

- Any classification and/or ordination method
- possible to compare the results of molecular study with other data (e.g. geographical)

0		Individuals							
112	1	0	1	1	0	1			
÷	1	0	0	0	1	1			
M	0	1	1	0	1	0			
r d	1	0	0	0	1	1			
ка et	0	0	1	1	0	0			
t a	1	1	1	0	0	0			
	1	0	1	0	1	1			

	01	02	03	04	05	06
01	0	1.00				-
02	0.56	0	15			
03	0.33	0.33	0	~	0.1	
04	0.47	0.26	0.50	0		
05	0.32	0.43	0.37	0.28	0	-36
06	0.33	0.56	0.56	0.37	0.46	0

Genetic distance: between genotypes

Similarity indices for dominant data

Simple Matching coefficient, or simple concordance coefficient:	(a + d)/(a + b + c + d)
Jaccard coefficient (absent data are treated as missing):	a/(a + b + c)
Nei-Li coefficient, or Dice:	2a/(2a + b + c)

		Indiv. i		
		1	0	
Ind	1	а	С	
iv.j	0	b	d	

individual i		individual j		count	condition
present	1	present	1	а	positive match
present	1	absent	0	b	mismatch
absent	0	present	1	С	mismatch
absent	0	absent	0	d	negative match

Genetic distance: between genotypes

Similarity indices for co-dominant data

e.g., Roger's distance

$$RD_{ij} = 1/2 \left[\sum (X_{ai} - X_{aj})^2 \right]^{1/2}$$

where: X_{ai} = frequency of allele a for individual i = 0 if allele not present = 0.5 if allele present in one copy = 1 if allele present in two copies

for comparison: Euclidean distance

$$\sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2} = \sqrt{\sum_{i=1}^n (p_i - q_i)^2}.$$

Genetic distance: between populations

Nei's genetic distance D_{xv} between populations i and j:

$$\mathbf{D}_{xy} = -\mathbf{In} (\mathbf{I}_{xy})$$
 with $\mathbf{I}_{xy} = \frac{\mathbf{J}_{xy}}{\sqrt{(\mathbf{J}_x \mathbf{J}_y)}}$

with I_{xy} = genetic identity J_X = average homozygosity in population X J_Y = average homozygosity in population Y J_{XY} = average interpopulation homozygosity

Genetic distance: calculating Nei's genetic distance

example: 3 populations (i), 13 loci (j) and # no. alleles/locus (k) 10 monomorphic and 3 polymorphic loci

		pop1	pop2	рор3
A	A ₁	0.8	0.74	0.65
	A ₂	0.2	0.26	0.35
Locus heterozygosity	h _{ijk}	0.32	0.3848	0.455
В	B ₁	0.86	0.81	1
	B ₂	0.01	0.1	0
	B ₃	0.13	0.09	0
Locus heterozygosity	h _{ijk}	0.2434	0.3258	0
D	D ₁	0	1	0.3
	D ₂	1	0	0.7
Locus heterozygosity	h _{ijk}	0	0	0.42
Average heterozygosity	Hi	0.0433	0.0547	0.0673
Average homozygosity	Ji	0.9567	0.9453	0.9327
Average interpop homozygosity	J _{ii} ,	J _{1,2} =0.8733	J _{1,3} =0.9346	J _{2,3} =0.8986
Genetic identity	l _{ii} ,	I _{1,2} =0.9183	I _{1,3} =0.9894	I _{2,3} =0.9570
Genetic distance	D _{ii} '	D _{1,2} =0.0852	D _{1,3} =0.0107	D _{2,3} =0.0440

Displaying relationship: cluster analysis

- Groups individuals or objects (i.e. populations) based on their similarity relationships, so that
- Objects with similar descriptions are mathematically gathered into the same cluster
- 1. hierarchical methods

group similar entities (individuals or populations) together into classes, and arrange the classes into a hierarchy

- 1. nearest neighbour = single linkage
- 2. furtherst neighbour = complete linkage
- 3. UPGMA = average linkage
- 2. non-hierarchical methods

groups similar entities (individuals or populations) together into classes without hierarchical structure

- 1. PCA
- 2. PCO
- 3. model-based methods
 - 1. maximum likelihood
 - 2. Bayesian methods

simple linkage - 'nearest neighbour'

- minimizes the inter-group distance by taking the distance to the neighbour with the highest similarity
- ✓ works with regular and compact groups, but is highly influenced by distant individuals
- inconvenient when there are different groups that are not well distributed in (mathematical) space

complete linkage - 'farthest neighbour'

- minimizes the inter-group distance by taking the distance to the individual with minimal similarity
- works well with regular and compact groups but, again, it is influenced by distant individuals

UPGMA = unweighted pair-group average using arithmetic means (average linkage)
✓ minimizes the inter-group distance by taking the average pairwise distance among all individuals of the sample

- ✓ frequently used method
- 1. matrix of distances among individuals or genotypes

2. find the smallest distance; these two entities (B and E) form a first cluster

	А	В	С	D	Е	F	G
А	-	63	94	111	67	23	107
В	63	-	79	96	16	58	92
С	94	79	-	47	83	89	43
D	111	96	47	-	100	106	20
Е	67	16	83	100	-	62	96
F	23	58	89	106	62	-	102
G	107	92	43	20	96	102	-

- 3. calculate the similarity of the newly created cluster to the rest of the entities as the the mean of the similarities of B and E
- 4. find the smallest distance in this matrix and merge the new entity into the cluster (DG)

	А	С	D	F	G	BE
А	-	94	111	23	107	65
С	94	-	47	89	43	81
D	111	47	-	106	20	98
F	23	89	106	-	102	60
G	107	43	20	102	-	94
BE	65	81	98	60	94	

Hierarchical clustering: UPGMA

	А	С	F	BE	DG
А	-	94	23	65	109
С	94	-	89	81	45
F	23	89	-	60	104
BE	65	81	60		96
DG	109	45	104	96	

Hierarchical clustering: UPGMA

	С	BE	DG	AF
С		81	34	92
BE	81		96	63
DG	34	96		107
AF	92	63	107	

Hierarchical clustering: UPGMA

PCA: Principal components analysis

- To represent a multidimensional dataset (including n individuals and m characteristics) into a reduced number of dimensions (e.g. 2 or 3-dimensional plot)
- PCA can be used for dimensionality reduction in a data set by retaining those characteristics of the data set that contribute most to its variance

How?

- By linear transformation of the original m variables into a new set of uncorrelated (orthogonal) variables: principal components
- The principal components are used as a new coordinate system such that the greatest variance by any projection of the data comes to lie on the first coordinate (called the first principal component), the second greatest variance on the second coordinate, and so on.

- 1/ Calculate correlation or covariance matrix between the characters in the datamatrix
- 2/ Eigenanalysis of this matrix. The eigenvectors with the largest eigenvalues correspond to the dimensions that have the strongest correlation in the data set
- 3/ Convert the original data onto this new coordinate system using the eigenvectors

Example

i	Eigenvalue	Percent of variance	Cumulative	
1	181.93252427	72.4831	72.4831	
2	5.49418088	2.1889	74.6720	77% of the total variance
3	4.60785573	1.8358	76.5078 ⇒	dimensions
4	4.27376157	1.7027	78.2105	
5	2.85174878	1.1362	79.3466	
6	2.54575460	1.0142	80.3609	
7	2.22088287	0.8848	81.2457	

PCO

PCO: Principal co-ordinate analysis

Variant of PCA, starts from a dissimilarity/distance matrix to calculate the eigenvalues

AFLP in sweetpotato and wild relatives

Table 1. Species and accessions of Ipomoea series Batatas studied.

Code	Species	Accession	Origin
1	I. cynanchifolia Meisn.	DPw 2554	Brazil
2	I. leucantha Jacquin	DLP 3354	Argentina
3		DLP 3004	Columbia
4		DLP 431	Ecuador
5		DLP 2931	Mexico
\Rightarrow Huang et al		DLP 521	Peru
(2222)	L ramosissima (Poir.) Choisy	DLP 2760	Bolivia
(2002)		DLP 3010	Columbia
9		DLP 1173	Ecuador
10		DLP 4679	Cyprus
11		DLP 2814	Peru
12	I. triloba L.	DLP 3003	Cohumbia
13		DLP 2982	Dominica
14		DLP 2943	Mexico
15		DI P 2429	Peni
16		DI P 4161	Paramiav
17	L amhenticola House	DE D 2041	Mavico
19	a. international flouse	DLP 4604	Nicaramia
10	I tiliacea (Willd) Choisy	DI P 2017	Mexico
20	t matta (ning) says	DI D 4638	Nicaragua
21	L condutateilaba Dennst	DEP 4038	Argentina
22	7. EDIGERATION DEMISE	DLP THO	Polinia
12		DLP 2702	Cohmhin
23		DLP 3001	Daraman
24	Lassadiatia (Dana) O'Danall	DLP 3017	Paraguay
23	1. granagona (Dair) O Dollen	DD- 0611	Pagenina
26		DFW 2011	Diazu
27		DLP +109	Paraguay
28		VIIATO S	Uruguay
29	I. Infinati (H.B.K.) G. Don	DLP 1054	Common
30		DLP 3085	Guatemala
31		DLP 2961	Mexico
32		DLP 4007	Nicaragua
33		DLP 714	Venezuela
34	I. batatas (L.) Lam.	Kyudei No.63	Japan
35		Kinang Kong	Philippines
36		CN 1108-13	Taiwan
37	I. lacunosa L.	Grif 6172 01 SD	United States
38	I. tahascana McDonald & Austin	PI 518479 01 SD	Mexico
39	I. tenuissima Choisy	PI 553012 01 SD	United States
40	1. setosa Ker Gawl.	CIP	Peru
41	I. alba L.	DLP 42	Peru
42	1. aristolochiaefolia G. Don	DLP 1254	Ecuador
43	I. cairica (L.) Sweet	DLP 496	Peru
44	I. dumetorum Willdenow ex Roemer & Schultes	DLP 3296	Peru

AFLP in sweetpotato and wild relatives

 \Rightarrow Huang et al (2002)

Figure 3. A single most parsimonious tree based on combined AFLP data set generated with all six primer combinations. Numbers above branches are bootstrap values. Numbers following each species name represent the accession code as given in Table 1.

Management of germplasm collections

Wheat (allohexaploid)

- \Rightarrow Low genetic diversity at most genetic loci (using DNA-markers)
- ⇒ However, prone to mutation and easy to cross with other species (many disease resistances obtained by inter-specific crosses)
- \Rightarrow High phenotypic diversity revealed and exploited by farmers and breeders worldwide
- \Rightarrow Balfourier *et al* (2007)
 - \Rightarrow INRA Clermont-Ferrand collection of more than 10,000 accessions of hexaploid wheat
 - \Rightarrow Morphologically well-characterized
 - ⇒ Is it necessary to keep all these accessions or can we preserve the same amount of genetic diversity with a smaller number of plants?
 - \Rightarrow DNA-markers (SSRs) can assist to create a Core collection

A core collection is a subset of a larger germplasm collection that contains the maximum possible genetic diversity of the species with a minimum of repetitiveness

- Several possibilities
- M strategy: genetic markers are used to sample the collection while maximizing <u>allele richness at each marker locus</u>

Geographical area *	Total sample	Core collection	Validation sample	Geographical area *	Total sample	Core collection	Validation sample
FRA	1312 (33.3)	101 (27.2)	103 (13.8)	AUS-NZL	111 (2.82)	13 (3.49)	15 (2.02)
NLD	76 (1.93)	5 (1.34)	19 (2.55)	RUS-Central Asia (TJK-TKM-KAZ-KIR-UZB)	125 (3.17)	11 (2.96)	13 (1.75)
DEU	89 (2.26)	6 (1.61)	17 (2.28)	Caucasus (ARM-GEO-AZE)	40 (1.01)	10 (2.69)	10 (1.34)
GBR-IRL	95 (2.41)	6 (1.61)	17 (2.28)	TUR	58 (1.47)	7 (1.88)	10 (1.34)
BEL	69 (1.75)	3 (0.81)	17 (2.28)	NPL	73 (1.85)	24 (6.45)	24 (3.23)
SWE	75 (1.90)	2 (0.54)	16 (2.15)	CHN-KOR-MNG	116 (2.94)	17 (4.57)	17 (2.28)
NOR-DNK	18 (0.46)	1 (0.27)	15 (2.02)	JPN	67 (1.70)	12 (3.23)	12 (1.61)
FIN	26 (0.66)	6 (1.61)	17 (2.28)	PAK-KSM	30 (0.76)	5 (1.34)	10 (1.34)
CHE	81 (2.05)	7 (1.88)	20 (2.69)	SYR	34 (0.86)	4 (1.08)	9 (1.21)
POL	78 (1.98)	7 (1.88)	17 (2.28)	AFG-IRN-IRQ	16 (0.41)	1 (0.27)	10 (1.34)
CZE	57 (1.45)	6 (1.61)	17 (2.28)	IND	44 (1.12)	5 (1.34)	9 (1.21)
AUT	52 (1.32)	6 (1.61)	17 (2.28)	DZA-MAR	16 (0.41)	2 (0.54)	9 (1.21)
ROM	68 (1.73)	3 (0.81)	16 (2.15)	EGY-TUN	25 (0.63)	5 (1.34)	15 (2.02)
BGR	80 (2.03)	5 (1.34)	17 (2.28)	ETH-NER	15 (0.38)	3 (0.81)	14 (1.88)
UKR-BLR	69 (1.75)	5 (1.34)	19 (2.55)	KEN	30 (0.76)	2 (0.54)	10 (1.34)
YUG-HRV	77 (1.95)	2 (0.54)	15 (2.02)	ISR-LBN-PAL	56 (1.42)	7 (1.88)	12 (1.61)
HUN	80 (2.03)	7 (1.88)	17 (2.28)	ZAF-ZWE	21 (0.53)	3 (0.81)	10 (1.34)
ESP	65 (1.65)	11 (2.95)	21 (2.82)	BRA	54 (1.37)	4 (1.08)	10 (1.34)
PRT	33 (0.84)	4 (1.08)	16 (2.15)	CHL	33 (0.84)	1 (0.27)	9 (1.21)
GRC-ALB-MAD	15 (0.38)	2 (0.54)	15 (2.02)	COL-PER	12 (0.30)	2 (0.54)	9 (1.21)
ΠА	78 (1.98)	4 (1.08)	17 (2.28)	MEX-GTM	103 (2.61)	9 (2.42)	10 (1.34)
USA	115 (2.92)	12 (3.23)	21 (2.82)	ARG-URY	76 (1.93)	5 (1.34)	11 (1.48)
CAN	79 (2.00)	9 (2.42)	20 (2.69)				and the second of
	402099206050	positions.com	5050 G.B.M. (855 -).	Total	3,942 (100.00)	372 (100.00)	744 (100.00

(AFG Afghanistan, ALB Albania, ARG Argentina, ARM Armenia, AUS Australia, AUT Austria, AZE Azerbaijan, BEL Belgium, BGR Bulgaria, BLR Belarus, BRA Brazil, CAN Canada, CHE Switzerland, CHL Chile, CHN China, COL Colombia, CSK Czech and Slovak Republics, DEU Germany, DNK Denmark, DZA Algeria, EGY Egypt, ESP Spain, ETH Ethiopia, FIN Finland, FRA France, GEO Georgia, GBR Great Britain, GRC Greece, GTM Guatemala, HUN Hungary, HRV Croatia, IND India, IRL Irleland, IRN Iran, IRQ Iraq, ISR Israel, ITA Italy, JPN Japan, KAZ Kazakhstan, KEN Kenya, KIR Kyrgyzstan, KOR Korea, KSM Kashmir, LBN Lebanon, MAD Macedonia, MAR Morocco, MEX Mexico, MNG Mongolia, NER:Niger, NLD Netherlands, NOR Norway, NPL Nepal, NZL New Zealand, PAL Palestine, PAK Pakistan, POL Poland, POR Portugal, PER Peru, ROM Romania, RUS Russia, SYR Syria, SWE Sweden, TJK Tajikistan, TKM Turkenistan, TUN Tunisia, TUR Turkey, URY Uruguay, UKR Ukraine, USA United States, UZB Uzbekistan, YUG Yugoslavia, ZAF South Africa, ZWE Zimbabwe)

Table 2 Total number of effective alleles, number of rare alleles and Nei's diversity index (II) for 38 genomic SSR	SSR locus	Total number of alleles in 3,942 accessions	Number of rare alleles in 3.942 accessions	Н	Total number of alleles in 372 core
loci	X mam 95-1A	26	77	0.688	74
	Xowm13541A	36	10	0.713	36
	Xawm 11,1B	26	77	0.793	74
	Xgam4151B	20	1	0.789	20
	Xmm6424D	20	17	0.674	10
	Nowm337.1D	23	19	0.846	52
	X awn 317.7A	35	29	0.874	24
	X mar 372.7A	16	30	0.903	26
	Y mem 7 57, 2B	13	10	0.644	11
	X awm 120-2B	30	26	0.864	29
	X ray 539,2D	40	35	0.888	40
	Ymm261.2D	78	25	0 721	74
	Ymm 2.3.4	11	1	0.579	11
	Xgwm480-3A	26	24	0.317	26
The core collection of 372 accessions	X rwm 566, 3B	14	75 18	0.801	14
and the second	Xgwm664-3D	7	5	0.223	1
. contains the same number of alleles	Xgwm34L3D	3.4	28	0.885	31
(actimate of the diversity present) as	Xgwm610-4A	26	23	0.642	24
(estimate of the diversity present) as	Xefd71-4A	11	8	0.459	10
the collection of 3942 accessions	Xgwm251-4B	25	19	0.844	25
	Xgwm149-4B	15	12	0.565	14
2. all geographical regions are	Xefd71-4D	23	16	0.885	23
	Xgwm415-5A	10	7	0.587	10
represented	Xgwm186-5A	27	22	0.863	26
, , , , , , , , , , , , , , , , , , ,	Xgwm408-5B	28	22	0.821	27
5. contains all unique alleles (present	Xgwm234-5B	28	21	0.881	27
only in one of the 3.042 plants):	Xgwm272-5D	18	14	0.65	17
0111y 111 011e 01 111e 3,942 plat11s),	Xgwm190-5D	25	19	0.743	25
restriction imposed by the authors	Xgwm427-6A	24	19	0.847	23
	Xgwm219-6B	30	24	0.869	30
	Xgwm626-6B	20	18	0.549	20
	Xgwm469-6D	21	16	0.833	21
	Xgwm325-6D	18	11	0.768	18
	Xgwm260-7A	30	26	0.824	30
	Xgwm400-7B	18	12	0.828	18
	Xgwm46-7B	27	21	0.865	27
	Xgwm44-7D	21	14	0.855	21
\mathcal{I}	107 715			0.861	28
	Total	908	730		892
	Mean/locus			0.742	

SSR- based genetic relationships among geographical origins for the 372 accessions included in the core collection