OPTIMIZATION OF DEEP-FAT FRYING PROCESS FOR SWEETPOTATO CRISPS FROM DIFFERENT VARIETIES

By

Sururah Nasir, Ganiyat Olatunde, Abdul Rasaq Adebowale, Isaac Ayelaagbe

Federal University of Agriculture, Abeokuta, Nigeria

SPHI MPU-CoP Meeting, Dar es Salaam, Tanzania

15 March, 2016

JUSTIFICATION

Sweet potato crisps could be marketed as highly nutritious snack foods, particularly the orange-fleshed varieties

- Orange fleshed sweetpotato are relatively new to the consumers
- Differences in texture and chemical composition associated with varieties influences process conditions
- It is important to determine the optimum frying conditions required for the production of sweetpotato crisps with high nutritional quality and consumer acceptable sensory properties

MAIN OBJECTIVE

 To determine optimum deep fat frying conditions for sweetpotato crisps from different varieties

SPECIFIC OBJECTIVES

- To determine the effect of various combinations of oil temperature and frying time on selected quality (chemical and sensory) attributes of crisps from three varieties of sweetpotato roots
- To determine optimized frying conditions for each variety of sweetpotato crisps
- To determine the effect of two packaging materials on some chemical and microbial characteristics of optimized sweetpotato crisps stored under ambient temperature (30±2°C)

MATERIALS

- Three varieties of sweetpotato roots (two orange-fleshed ,one yellow-fleshed)
- Refined deodorized vegetable oil

Experimental design

- study based on hypotheses that colour, moisture content, oil content, crispness and beta-carotene content of the product are functionally dependent on the temperature of the oil and the frying time
- * range of oil temperature and frying time determined from literature review followed by trial experiments conducted in the laboratory
- Central composite rotational design with two factors was used, 13 runs and five center points were generated

TABLE 1: Experimental design showing coded and actual values of oiltemperature and frying time used in the experiment

	Variabl	e codes	Actual values			
Trial	X ₁	X ₂	Temperature (°C)	time (min)		
1	0	0.2	150	4.5		
2	0	-2.5	150	2.38		
3	0	0.2	150	4.5		
4	2.5	0.2	164.14	4.5		
5	2	-2	160	3		
6	0	0.2	150	4.5		
7	-2	-2	140	3		
8	2	2	160	6		
9	0	0.2	150	4.5		
10	0	2.5	150	6.62		
11	-2	2	140	6		
12	0	0.2	150	4.5		
13	-2.5	0.2	135.86	4.5		

Preparation of sample

* - Temp/Time combination as generated by CCRD/ Bush glass fryer
** - Two packaging materials (High Density Polyethylene and Laminated Aluminium foil)
*** Room Temperature (30±2°C)/ 6 weeks

Fig. 1. Flow chart for production of sweetpotato crisps (adapted from Fetuga *et al.,* 2013)

ANALYSIS OF SAMPLES

- Chemical and physical properties of sweetpotato crisps {Moisture content, Oil content (AOAC, 2005), Total carotenoids (Kimura et. al., 2004), Colour (L*a*b*) – Konica Minolta Chroma meter}
- Sensory properties (crispiness, orange, yellow and brown colours (Descriptive method/ Intensity scoring)
- Analysis on optimized samples
 - Chemical properties: (Protein content, Crude fibre, Ash content)
 - Sensory analysis (Ranganna, 1999)
 - Product test Descriptive method/ 10cm line intensity scale /10 trained panelists
 - Consumer test Acceptance method /9-point Hedonic scale / 50 untrained inhouse panelists

STORAGE STUDIES

2 packaging materials (high density polyethylene and laminated aluminum foil) The products stored at ambient temperature (30±2°C) for 6 weeks

Storage Studies

Microbial Analysis (FDA, 2013) (Total viable count, Total mould count, Salmonella count, Shigella count, Staphylococcus count)

Chemical Analysis (Peroxide value, Free fatty acid, Saponification value, Total carotenoids, Carotenoid retention)

Statistical analysis

- Data generated for optimization was analyzed with Response surface methodology using Design Expert 6.0.8.
- The data generated from the analysis of the optimized products was analyzed with ANOVA using Statistical Analysis System
- Means were separated with Duncan Multiple Range Test (DMRT)

• Data was analyzed at p<0.05

Table 2: Effect of Oil temperature and frying time on chemical and colour properties of sweetpotato crisps on Mother's delight variety

				Oil	Total			
	Temperature		Moisture	Content	Carotenoids			
Trial	(⁰ C)	Time (min)	Content (%)	(%)	(µg/100g)	L*	a*	b*
1	150.00	4.50	36.97	31.43	3793.72	2.07	46.58	21.74
2	150.00	2.38	47.80	29.72	4925.28	15.66	56.22	26.78
3	150.00	4.50	41.63	29.00	3758.36	2.25	46.82	22.45
4	164.14	4.50	22.81	31.73	1057.61	1.14	37.13	18.26
5	160.00	3.00	33.39	25.78	3677.98	5.11	42.91	17.69
6	150.00	4.50	43.25	31.67	3713.35	2.25	50.85	20.83
7	140.00	3.00	37.96	26.30	5953.96	18.81	49.45	21.06
8	160.00	6.00	18.61	30.56	4086.03	1.74	34.36	14.90
9	150.00	4.50	19.62	35.67	3761.58	2.27	49.29	23.01
10	150.00	6.62	30.36	35.72	2848.25	2.21	41.81	17.67
11	140.00	6.00	16.79	32.77	4795.52	5.25	39.86	13.60
12	150.00	4.50	36.90	25.07	3771.22	2.21	46.94	18.75
13	135.86	4.50	45.19	31.66	4124.74	5.96	49.33	22.31
va	lues are means	of replicate	determinatio	nc				

values are means of replicate determinations

L* - lightness a* - redness b* - yellowness

Table 3: Effect of Oil temperature and frying time on Sensory properties of sweetpotato crisps on Mother's delight variety

Trial	Temperature (⁰ C)	Time (min)	crispiness	Colour orange	Colour brown	Colour yellow
1	150.00	4.50	9.29	8.88	0.00	0.00
2	150.00	2.38	0.50	8.80	0.00	2.92
3	150.00	4.50	9.11	8.81	0.00	1.29
4	164.14	4.50	9.56	0.00	9.43	0.34
5	160.00	3.00	5.39	7.22	0.00	0.57
6	150.00	4.50	8.88	8.63	0.00	0.69
7	140.00	3.00	0.03	7.98	0.00	2.35
8	160.00	6.00	9.33	0.00	8.38	0.06
9	150.00	4.50	9.09	8.92	0.00	0.99
10	150.00	6.62	9.04	0.00	7.63	0.00
11	140.00	6.00	1.70	8.08	0.00	0.48
12	150.00	4.50	9.04	8.77	0.00	1.66
13	135.86	4.50	3.18	7.97	0.00	0.93

values are means of replicate determinations

Figure 2: Contour plots showing the effect of temperature and time on L*, crispiness, moisture content and oil content of optimized sweetpotato crisps from Mother's delight variety

Table 4: Chemical and colour properties of optimized SP crisps fromthree varieties of SP roots

Variety	Temp (°C)	Time (min)	†Moistu re Content (%)	†Oil Content (%)	†Total Caroten oid (μg/100 g)	†L*	†a*	†b*	Crude protein (%)	Crude fibre (%)	Crude ash (%)
MD	156.55	3.51	5.15	28.70	3866.74	46.94	21.20	35.36	3.71	8.87	1.27
KJ	140.00	6.00	2.48	24.66	3530.52	45.34	3.99	29.10	5.77	9.14	1.01
AF	150.68	6.00	2.08	26.92	1934.04	46.28	3.26	23.34	3.40	6.63	1.65

+values generated from software

MD - Mother's delightKJ - King JAF - Anoma FunfunL* - lightnessa* - rednessb* - yellowness

MD – Mother's delight (156.55°C, 3.51 min) KJ – King J (140°C, 6 min) AF –Anoma Funfun (150.68°C, 6 min)

Figure 3: Spider chart for sensory attributes of optimized sweetpotato crisps from three varieties

MD – Mother's delight, UMU (156.55°C, 3.51 min)

KJ – King J (140°C, 6 min)

AF – Anoma Funfun (150.68°C, 6 min)

Figure 4: Consumer sensory scores for optimized crisps from varieties of SP roots

- MDA Mother's Delight in Aluminium foil
- MDH Mother's Delight in HDPE
- KJA King J in Aluminium foil
- KJH King J in HDPE
- AFA Anoma Funfun in Aluminium foil
- AFH Anoma Funfun in HDPE

Figure 5: Peroxide Values of SP crisps as influenced by variety and storage period

Figure 7: Saponification Values of SP crisps as influenced by variety and storage period

- MDA Mother's Delight in Aluminium foil
- MDH Mother's Delight in HDPE
- KJA King J in Aluminium foil
- KJH King J in HDPE
- AFA Anoma Funfun in Aluminium foil
- AFH Anoma Funfun in HDPE

Figure 8: Total Carotenoid Values of SP crisps as influenced by variety and storage period

Table 5: Carotenoid Retention Values of SP crisps as influenced by variety andstorage period

Sample/week	0	1	2	3	4	5	6
MDA	100.00ª	78.07°	44.56 ^{ab}	44.54 °	43.15 °	42.52 ^e	42.20 °
MDH	100.00 ^a	52.89 ^a	39.40 ^{ab}	34.94 ^{abc}	34.29 ^{bc}	33.29 ^d	33.26 ^d
KJA	100.00 ^a	75.57 °	41.74 ^a	24.93 ^{ab}	24.91 ^{ab}	24.89 °	24.86 °
КЈН	100.00 ^a	49.54 ^a	31.42 ^a	20.60 ª	20.59 ª	20.10 ^b	19.89 ^b
AFA	100.00 ^a	69.80 ^b	64.71 ^b	42.31 bc	39.67 °	39.38 °	39.02 °
AFH	100.00 ^a	50.92 ^a	20.23 ^a	16.84 ª	16.07 ^a	15.08 ^a	13.81 ^a

Values in any column, with the same letter are not significantly different (P < 0.05)

MDA – Mother's Delight in Aluminium foil

MDH – Mother's Delight in HDPE

KJA – King J in Aluminium foil

KJH – King J in HDPE

AFA – Anoma Funfun in Aluminium foil

AFH – Anoma Funfun in HDPE

*Results of microbial counts are averages of triplicate values with standard error obtained from colony forming unit on agar plate and converted to the standard log cfu/ml values at appropriate dilution factors for each medium.

MDA – Mother's Delight in Aluminium foil MDH – Mother's Delight in HDPE KJA – King J in Aluminium foil KJH – King J in HDPE AFA – Anoma Funfun n Aluminium foil AFH – Anoma Funfun in HDPE

Figure 9: Total Viable Count of SP crisps as influenced by variety and storage period

Conclusion

The optimum frying conditions and corresponding qualities for each variety are:

- Mother's delight, UMU SP03 (156.55°C, 3.51 min) moisture content – 5.15%, oil content – 28.7%, total carotenoids – 3866.74 µg/100g, a* - 21.20, b* - 35..36, crude protein – 3.71%, crude fibre – 8.87%, crude ash – 1.27%, crispiness – 8.64, orange – 8.35, oiliness – 2.5
- King J, UMU SP01 (140°C, 6 min) moisture content 2.48%, oil content 24.66%, total carotenoids 3530.52 µg/100g, a* 3.99, b* 29.1, crude protein 5.77%, crude fibre 9.14%, crude ash 1.01%, crispiness 8.92, orange 4.9, oiliness 7.61
- 'Anoma Funfun', UMU SP02 (150.68°C, 6 min) moisture content 2.08%, oil content 26.92%, total carotenoids 1934.04 µg/100g, a* 3.26, b* 23..34, crude protein 3.4%, crude fibre 6.63%, crude ash 1.65%, crispiness 7.99, orange 0, yellow 9.15, oiliness 3.39
- Aluminium foil showed a good barrier for oxidative and microbial rancidity and also better carotenoid retention ability

Recommendation

 The optimum frying conditions generated in this study should be validated in real time SME production of sweetpotato crisps from each variety

Selected references

- Afuape S.O., 2013. *Selected sweetpotato research in Nigeria*. 6th Subsaharan sweetpotato meeting, Accra, Ghana. 25-26 Feb., 2013.
- Egbe, O.M. 2012. Relative performance of three sweet potato varieties in sole and intercrop systems in Southern Guinea Savanna ecology of Nigeria. *Global Journal of Science Frontier Research Agriculture & Biology*. 12(3). 37-43.
- Fetuga, G.O., Ajayi, T.E. and Karim, O.R. 2014. Effect of frying temperature and time on composition and sensory quality of sweetpotato crisps. *African Journal of Root and Tuber crops*. Vol. 11 No. 1: 17-25.
- Oke, M.O., Workneh, T.S. 2013. A review on sweet potato postharvest processing and preservation technology. *African Journal of Agricultural Research*, 8 (40), 4990-5003
- Shittu, T., Raji, A.O., and Sanni, L.O. 2007. Bread from Composite cassava-wheat flour: Effect of baking time and temperature on some physical properties of bread loaf. *Food Research International Journal*. 40: 280-290.
- Sobukola, O.P., Awonorin, S.O., Sanni, L.O., and Bamiro, F.O. 2008. Deep-fat frying of yam slices: Optimization of processing conditions using response surface methodology. *Journal of Food Processing and Preservation*, 32: 343-360.

ACKNOWLEDGEMENT

Sweetpotato for Health & Wealth in Nigeria Project

Funded by Federal Ministry of Agriculture & Rural Development

Implemented by International Potato Centre (CIP), Nigeria Office

SPHI sponsored my attendance at this meeting

Thank you for your rapt attention