DEVELOPMENT OF END-USER PREFERRED SWEETPOTATO VARIETIES IN GHANA

BY ERNEST BAAFI

Supervisors:

- Prof. V. E. Gracen (WACCI-CU)
- Prof. E. T. Blay (WACCI-UG)
- Prof. K. Ofori (WACCI-UG)
- Dr. J. Manu-Aduening (CSIR-CRI, Ghana)
- •Dr. Ted Carey (CIP, Ghana)

Outline of Presentation

- Background
 - 1. Materials and Methods
 - 2. Results
- □ Conclusions
- Acknowledgements

Background

Figure 1. Some innovative sweetpotato products - Source: Adu-Kwarteng et al., 2001.

05/06/2015

Background

- ☐ Locally available clones have very sweet taste, which limits consumption as a staple food (Missah and Kissiedu, 1994)
- ☐ The sweet taste, due to sugars, is the central feature that significantly modulates the overall flavor (Wang and Kays, 2003)
- ☐ Recently introduced orange-fleshed varieties have low dry matter content
- ethnic ☐ Preference for sweetpotato varies with background and geographic location (Kays and Horvat, 05/06/1983)

Background

☐ Low adoption of the improved varieties.

4 released varieties (2005)

CRI-Apomden:

- Pot. yield -35 t/ha.
- High B-carotene (vit. A) content

CRI-Otoo:

- Pot. yield 23 t/ha.
- Medium B-carotene
 (Vit A) content

CRI-High starch:

- Pot. Yield 18 t/ha.
- 21% starch.
- Good for fufu, ampest and industrials uses

CRI-Ogyefo:

- Pot. Yield 20 t/ha.
- 12.4% starch content.

5

- Excellent for ampeal
- fried chips

Figure 2. Four of the 13 released varieties

05/06/2015

Specific objectives

- 1. Ascertain stakeholders' knowledge, perceptions, and preferences on sweetpotato end-user-traits in Ghana
- 2. Assess genetic variation of sweetpotato genotypes in Ghana using agro-morphological, physico-chemical and SSR markers
- 3. Assess self- and cross-compatibility in sweetpotato germplasm
- 4. Determine the gene action involved in the control of betacarotene, dry matter and sugar contents of storage roots
- 5. Determine level of heterosis for beta-carotene, dry matter and sugar contents of sweetpotato storage roots

Objective 1

Ascertain stakeholders' knowledge, perceptions, and preferences on sweetpotato end-user-traits in Ghana

Study areas

Figure 3. Map of Ghana showing areas PRA was done

2012

□ methodology

1. Focus Group Discussions (FDG)

2. Administration of Semistructured Questionnaire (SSQ)

□ Data analysis

1. FGD - GenStat

2. SSQ - SPSS

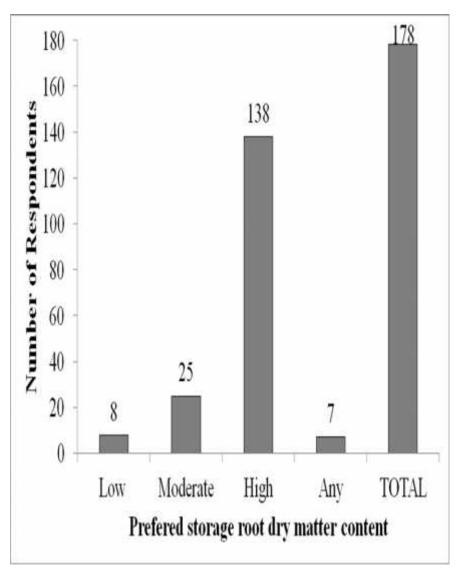


Figure 3. Preferred storage root dry matter content distribution

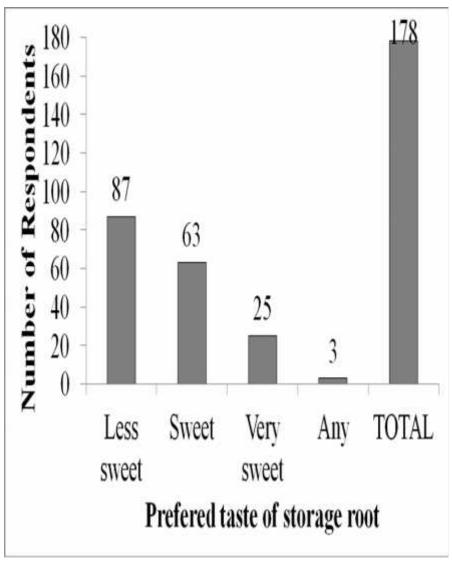
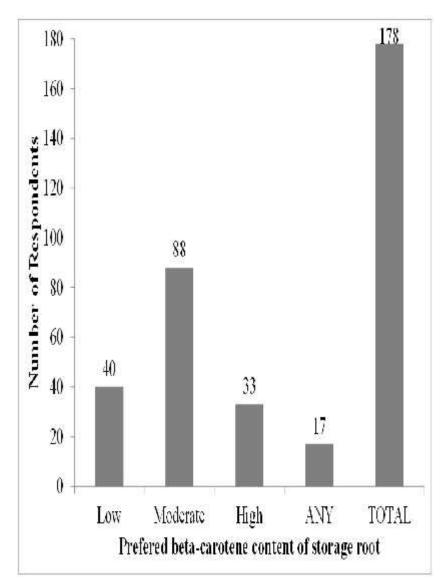



Figure 4. Preferred storage root taste (sweetness) preference

35 30 5 Brong Greater Upper Volta Northern Eastern Ashanti Central Ahafo East Acera Community (Region)

Figure 5. Preferred beta-carotene content of storage root 05/06/2015

Figure 6. community x beta-carotene preference

Objective 2

Assess genetic variation of sweetpotato genotypes in Ghana and their utilization for breeding

- 1. Phenotypic Characterization
- > 115 sweetpotato accessions collected for study
- Location Fumesua
- ➤ Data collection sweetpotato descriptor for phenotyping (CIP/AVRDC/IBPGR, 1991) & physico-chemical traits

- Data analysis
 - ✓ PCA and Clustering using GenStat version 9.2.0.152 (Genstat, 2007)
 - ✓ GGE biplot (Yan and Kang, 2003)

2. Molecular Characterization

- > 76 sweetpotato accessions
- ➤ 25 SSR markers (Buteler et al. 1999; Diaz and Gruneberg 2008; Tumwegamire et al. 2011)
- ➤ Location CSIR-CRI, Ghana and ICRISAT, India
- Data analysis
 - ✓ NTSYSpc software version 2.1 (Rohlf, 1993; Rohlf, 2002) for the binary data
 - ✓ Principal coordinate analysis (PCoA) (Genstat, 2007)
 - ✓ Polymorphic information content (PIC) (Weir,1996)
 - ✓ Analysis of Molecular Variance (Excoffier et al., 2006)

3. Estimation of Genetic Parameters

- > 115 sweetpotato accessions
- ➤ Location
 - ✓ Field work Fumesua (Forest ecozone) and Pokuase (Coastal Savannah ecozone) both major and minor seasons in 2011
 - ✓ RCBD in 2 reps was used
 - ✓ Root quality data NIRS Lab. at CSIR-CRI, Ghana and Lima, Peru
- Data analysis
 - ✓ method of Steel and Torrie (1980)
 - ✓ The variance components determined (Prasad et al., 1981)
 - √ h²_b, GCV, PCV and GA determined (Burton, 1952; Johnson *et al.*, 1955; Kumar *et al.*, 1985)
 - ✓ Genotypic correlation coefficient computed using Miller *et al.* (1958) and (IRRI, 2006)

Table 1 Principal Component Analysis of the agro-morphological and physico-chemical traits

Trait	PC1	PC2	PC3	PC4	PC6	PC6	
Root weight	-0.371	-0.091	-0.133	0.005	-0.028	-0.033	
Markelable root wgt.	-0.362	-0.082	-0.139	0.021	-0.003	-0.008	
Unmarketable yield.	-0.370	-0.094	-0.128	-0.002	-0.038	-0.043	
β-carotene	0.168	-0.310	-0.128	-0.050	-0.030	0.024	
Dry matter	0.168	0.310	0.128	0.050	0.030	0.024	
Total sugar	0.029	-0.404	0.133	0.030	-0.012	-0.025	
Sucrose	0.018	-0.235	0.145	0.191	-0.336	-0.143	
Fructose	0 041	-0 259	-0 056	-0 257	0.343	0 173	
Glucose	0.023	-0.316	0.020	-0.212	0.307	0.143	
Iron	0.172	-0.035	-0.416	0.063	-0.126	-0.099	
Zinc	0.157	-0.021	-0.364	0.147	-0.249	-0.140	
Protein	0.114	0.071	-0.401	0.107	-0.178	-0.125	
Starch	-0.141	0.144	0.361	0.201	-0.133	-0.018	
Rt. Oxidation	-0.064	0.020	-0.111	0.069	-0.032	0.414	

^{*}Values in bold indicate the most relevant characters (>0.3) that contributed most to the variation of the particular component

Table 2. Analysis of molecular variance (AMOVA) for the 76 sweetpotato accession

Source of	Df	Sum of	Variance	Percentage of
variation		squares	components	Variation
Among groups	3	55.894	0.35619*	2.88
Within groups	72	865.198	12.01664**	97.12
Total	75	921.092	12.37284	

^{*}Significant at 0.05 **Significant at 0.01

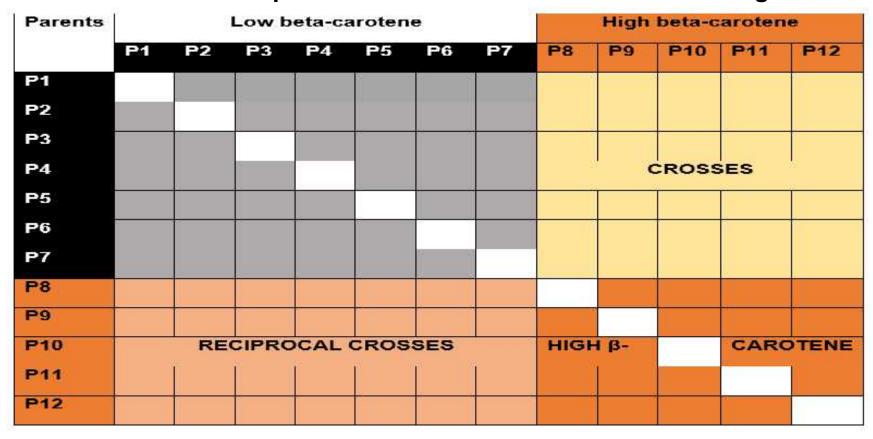
Table 3. Genotypic correlation coefficient for the physico-chemical and agronomical traits of sweetpotato accessions

Trait	DM	BC	F	G	S	TS	ST	Р	Fe	Zn	HI	RWT	MKTRWT
DM		-1.20	-0.76	-0.78	-0.23	-0.77	0.71	80.0	-0.11	0.18	-0.69	-0.12	-0.06
ВС		100	0.30	0.62	0.74	0.56	-0.61	0.15	0.74	0.58	-0.41	-0.41	-0.41
F				0.98	0.04	0.85	-0.61	-0.24	0.02	-0.22	0.30	0.06	0.01
G					0.05	0.91	-0.78	-0.19	0.11	-0.10	0.30	0.06	0.01
S						1.09	-0.71	0.75	1.07	1.15	-0.14	-0.42	-0.41
TS							-0.99	0.15	0.60	0.39	0.22	-0.12	-0.17
ST								0.21	0.71	0.39	0.57	-0.19	0.49
Р									0.75	0.75	0.27	-0.48	-0.46
Fe										0.90	-0.08	-0.54	-0.62
Zn											0.00	-0.51	-0.50
HI												0.56	0.57
RWT													1.00

DM: Dry matter, BC: Beta-carotene, F: Fructose, G: Glucose, S: Sucrose, TS: Total sugars, ST: Starch, P: Protein, Fe: Iron, Zn: Zinc, HI: Harvest index, RWT: Root weight, MKTRWT: Marketable root weight

Table 4. Genotypic and phenotypic coefficient of variation, heritability and expected genetic advance for the traits

Trait	Genotypic coefficient of variation	Phenotypic coefficient of variation	Heritability (H ² _b)	Expected Selection Gain (R)	Expected Selection Gain (R %of mean)
Dry matter	7.60	9.61	0.63	0.05	12.37
Beta-carotene	40.28	42.36	0.90	9.03	78.90
Fructose	55.48	60.18	0.85	2.12	105.34
Glucose	36.91	39.88	0.86	2.79	70.35
Sucrose	11.93	21.70	0.30	1.38	13.51
Total sugars	18.01	21.59	0.70	5.10	30.95
Starch	4.07	4.78	0.72	4.89	7.13
Protein	12.46	15.58	0.64	0.91	20.40
Iron	6.80	8.70	0.61	0.22	10.96
Zinc	8.08	9.90	0.65	0.14	13.60
Harvest index	36.80	39.53	0.84	0.27	68.40
Root weight	50.13	55.13	0.83	2.42	93.83
Marketable	55.35	63.40	0.76	2.01	99.40
Root weight					


05/06/2015

Objective 3 - 5

- □ Combining Ability studies
 - 1. Compatibility status
 - 2. Gene action
 - 3. Population development

- ☐ Beta-carotene/Dry matter 12 x 12 full diallel
- ☐ Sugars 15 x 15 full diallel

Table 5. Full diallel representation for the beta-carotene crossing block

05/06/2015

- ☐ High beta-carotene Population
- **□**Low sugar population

Table 6. Genetic materials used for population development

Parents	Dry matter content (%)	Beta-carotene content (mg/100g)DW	Sugar content (%)
Histarch	45	9.85	10.13
Ogyefo	42	6.83	11.67
AAT – 03 – 025	39	10.98	12.26
CIP 442264	45	7.74	11.06
*Resisto	38	27.53	18.53
*Beauregard	32	24.31	22.90
*Apomuden	27	33.67	28.97
*CIP 443035	36	19.75	14.98
*CIP 442850	27	20.21	30.34

^{*} Parents used for the development of high beta-carotene population

□F1 evaluation

LOC – Fumesua (Forest), Wenchi (Transition), and Pokuase (Coastal Savannah)

□ Data analysis

- > Gene action
- Gardner and Eberhart (1966) Analysis II
- > Population development
- Mid-parent & better parent heterosis determined (Fonseca and Patterson, 1968; Wynne et al., 1970)

Table 7. Number of crosses conducted to generate F_1 for studies on sugar content of sweetpotato

Parents	S50	848	S43	8113	882	S15	S109	875	861#	S87 [#]	S97*	S31 [#]	864*	872 [#] 874 [#]
S50	*				102	4	81		112	143	1	53	3	74
S48		*								4				
S43			*						35	423		6		13
S113				*					13	:4		1		7
S82	35				*		13		20	42		2		
S15						*			57	145		72		37
S109	20				6		*		6	22				
S75								*	54	37		38		1
S61 [#]	29		3		25	27	14	8	*	29				
S87#		6	203	24	142	315	37	31	137					12
S97#											*			
S31 [#]	6			4		5	3	10	3	3		4		
S6 4 [#]													*	
S72 [#]	19						1	4	1					*
\$7 4 [⊭]														*

*Low sugar parent. Light green quadrant = crosses between low and high sugar parent; dark green = reciprocal crosses; Pink=crosses among low sugar clones. S50 (Apomuden), S48 (CIP 440071), S43 (Paga 01), S113 (Ukerewe), S82 (Beauregard), S15 (B/Faso 002), S109 (CIP 442850),), S75 (B/Faso 001), S61 (Ogyefo), S87 (Histarch), S97 (Ehiamankyene 01), S31 (CIP 440095), S64 (CIP 442264), S72 (AAT 03 025), S74 (Ouagadougon 02)

Table 8. Success rate and germination percentage of the crosses

Cross	Number of crosses	Success rate (%)	Seeds per capsule	Percent germination (%)
61 x 87	27	51.9	1.86	95.2
61 x 50	29	51.7	3.53	88.0
61 x 82	25	52.0	1.08	100.0
64 x 87	5	60.0	1.33	100.0
79 x 50	10	50.0	3.00	100.0
79 x 109	1	100.0	3.00	100.0
**	44	ee	ee	cc
44	62	cc	2.5	cc .
79 x 21	21	52.4	0.18	100.0
79 x 82	2	50.0	4.00	90.9
21 x 50	12	50.0	0.50	100.0
82 x 87	42	50.0	0.71	100.0
82 x 50	35	72.0	1.72	96.9
82 x 109	13	53.9	0.14	100.0
82 x 79	11	54.5	0.67	100.0
Mean	45.41	54.1	1.21	96.3

87-Histarch; 61-Ogycfo; 50-Apomuden; 82-Beauregard; 64-CIP 442264; 79-CIP 443035; 109-CIP 442850; 21-Resisto

Table 9. Genetic material used for the gene action study

Parents	Dry matter content (%)	β-carotene content (mg/100g)DW	Sugar content (%)	-
Apomuden	27.0	33.67	28.97	•
Beauregard	32.0	24.31	22.90	
Histarch	45.0	9.85	10.43	
Ogyefo	42.0	6.83	11.67	

05/06/2015

Table10. Mean squares (Gardner and Eberhart, 1966 Analysis II) for four parents, their crosses and reciprocals across three environments

Source of variation	Df	β-carotene content	Dry matter content	Sugar content	Starch content	Iron content	Zinc content
			CROSSES				
Environment (Env.)	2	23.974"	0.0005"5	51.77**	37.50*	1.18**	0.73**
Rep. (Env.)	3	4.696"	0.0002"8	8.20 ^{ns}	2.19ns	0.05"	0.02ns
Entry	9	801.825**	0.0193**	294.76**	408.02**	0.64**	0.21**
Env. x Entry	18	13.436 ^{ns}	0.8000"*	8.61 ^{ms}	5.81ns	0.05"	0.02**
Overall heterosis (h _{ij})	5	305.932**	0.0017*	74.38**	107.11**	0.360**	0.1056"s
Average heterosis (h)	1	533.216**	0.0014 ^{ns}	5.48 ^{ns}	41.85*	1.141**	0.2310*
Variety heterosis (h _j)	3	264.286**	0.0032**	132.78**	107.70**	0.233 ^{ns}	0.1992"
SCA	2	104.175**	0.0014"	13.453**	17.40 ^{ns}	0.001 ^{ns}	0.0003 ^{ns}
		R	ECIPROCA	LS			
Environment (Env.)	2	26.08*	0.0019"	29.21**	43.69**	1.43**	0.90**
Rep. (Env.)	3	2.87 ^{ns}	0.0005"8	10.10**	3.37ns	0.03"5	0.02118
Entry	9	719.56**	0.0214**	288.60**	426.35**	0.72**	0.23**
Env. x Entry	18	11.24*	0.0005"8	6.40**	4.48ns	0.05*	0.02*
Overall heterosis (h _{ij})	5	213.01**	0.0036**	88.99**	158.11**	0.36**	0.129*
Average heterosis (h)	1	686.72**	0.0001"	37.64**	75.05**	1.03**	0.210*
Variety heterosis (h _j)	3	90.03**	0.0049**	113.12**	206.65**	0.30*	0.145*
SCA	2	80.17**	0.0015"	34.01**	47.88**	0.02 ^{ms}	0.003"

^{*}Significant at P< 0.05; **Significant at P<0.01; ns Not significant

Table 11. Estimates of mid-parent heterosis (Hb) and heterobeltiosis (Hbt) for the F1 hybrids of Histarch (87) and Ogyefo (61)

Genotype	D гу г	natter	Total	sugars	Sta	ırch	Pro	tein	β-car	otene	In	on	Z	inc	Root	yield
	Hb (%)	Hbt (%)	Hb (%)	Hbt (%)	Hb (%)	Hbt (%)	Hb (%)	Hbt (%)	НЬ (%)	Hbt (%)	НЬ (%)	Hbt (%)	Hb (%)	Hbt (%)	Hb (%)	Hbt (%)
61x87-11	308	-3 ^{ns}	-39.9*	-33.9*	3.1 ^{ms}	3.0115	26.6 ^{ns}	22.6 ^{ris}	33.2115	19.4115	-10.8 ^{ns}	-13.1 ^{us}	7.9 ^{ns}	3.3 ^{ns}	-6.6 ^{ns}	-22.6°s
87x61-26	-14*	-18*	-39.1*	-33.0*	-3.6 ^{ns}	-3.7 ^{ns}	86,4**	80.5**	60,5 ^{ns}	43.9 ^{ns}	19.5*	16.5 ^{ns}	18.7*	13.7 ^{ns}		¥
87x61-13	305	-2 ^{ns}	-36.6*	-30.3*	4.6*	4.6*	7.3 ^{ns}	4.005	-46.6°	-52.1 ^{ns}	-0.3 ^{us}	-2.9 ^{ns}	0.63 ^{res}	-3.6 ^{ns}	-4.0 ^{ns}	-20.2°°
87x61-21	1115	-411s	-33.6*	-27.0*	0.1 ^{rts}	$0.0^{\rm HS}$	41.6*	37.2 ^{ns}	-36.0 ^{ris}	-42.6 ^{ns}	7.6 ^{ns}	4.8 ^{ms}	15.3 ^{ms}	10.4 ^{ns}	-29.6 ^{ns}	-41.7°s
87x61-37	-1 ^{IIS}	-611S	-28.0*	-20.8*	-0.4 ^{rrs}	-0.5 ^{ns}	3.0 ^{ns}	-0.208	19.8 ^{ms}	7.4 ^{ns}	-7.8 ^{ns}	-10.1%	$7.2^{\rm ns}$	$2.6^{\rm ns}$	64.7 ^{ns}	36.5%
87x61-65	2115	-3ns	-25.4 ^{ns}	-17.9 ⁺	1.7 ^{ms}	1.7115	4.5 ^{ns}	1.20%	-20.0°	-28.3°s	-7.6 ^{ns}	-10.0%	$3.2^{\rm ns}$	-1.2 ^{rrs}	-12.9 ^{ns}	-27.9°s
87x61-87	-4ns	-gns	-21.8 ^{ns}	-14.0 ^{ns}	-1.1 ^{ns}	-1.2 ^{ns}	43.3*	38.8 ^{ns}	52.0 ^{ns}	36.3 ^{ne}	8.4 ^{ns}	5.6 ^{ns}	14.8 ^{ns}	9.9 ^{ns}	-55.9 ^{ns}	-63.5*
87x61-88	1 ^{ns}	-4ns	-21.5 ^{ns}	-13.7 ^{ns}	1.9 ^{ns}	1.9 ^{ns}	6.5 ^{ns}	3.2 ^{rs}	-21.7 ^{ns}	-29.8 ^{ns}	-9.8ns	-12.1 ^{ns}	7.45 ^{ns}	2.9 ^{ns}	-15.3 ^{ns}	-29.8 ^{rs}
ii.)ii				10	ii.					.00	II.		**		u
61x87-4	-7ns	-12 ^{ns}	8.5 ^{ns}	19.4 ^{ns}	-0.9 ^{ns}	-1.0 ^{ns}	-9.4 ^{ns}	-12.2 ^{ns}	-25.4 ^{ns}	-33,1 ^{ns}	-6.3 ^{ns}	-8.7 ^{ns}	-5.4 ^{ns}	-9.4 ^{ns}	30.9 ^{ns}	8.5 ^{ns}
87x61-47	-9ns	-14 ^{ns}	8.7ns	19.6 ^{ns}	-2.1 ^{ns}	-2.1 ^{ns}	-0.1ns	-3.3 ^{ns}	-7.8 ^{ns}	-17.3 ^{ns}	-6.3 ^{ns}	-8.7 ^{ns}	2.7 ^{ns}	-1.6 ^{ns}	11.7 ^{ns}	-7.4 ^{ns}
87x61-46	-Bns	-13 ^{ns}	14.7 ^{ns}	26.1 ^{ns}	-3.5 ^{ns}	-3.6 ^{ns}	-16.7 ^{ns}	-19.3 ^{ns}	51.3 ^{ns}	35.7 ^{ns}	-13,0 ^{ns}	-15.3 ^{ns}	-3.1 ns	-7.2 ^{ns}	-79.3*	-82.8*
87x61-57	-9ns	-14 ^{ns}	17.0 ^{ns}	28.7 ^{ns}	-4.2*	-4.3 ^{ns}	13.7 ^{ns}	10.1 ^{ns}	-39.8 ^{ns}	-46.0 ^{ns}	-2.5 ^{ns}	-5.0 ^{ns}	9.4 ^{ns}	4.8 ^{ns}	17.7 ^{ns}	-2.5 ^{ns}

*Significant at P<0.05; **Significant at P<0.01; **Not significant at P<0.05

Table 12. Performance of Histarch and Ogyefo, and their hybrids

Genotype	Dry matter (%)	Total Sugars (%)	Starch (%)	Protein (%)	β-carotene (mg/100g)DW	Iron (mg/100g)DW	Zinc (mg/100)DW	Root yield (t/ha)
61x87-11	45	9.01	75.14	3.51	5.66	1.36	0.98	16.03
87x61-26	38	9.13	70.22	5.16	6.82	1.82	1.08	
87x61-13	45	9.50	76.25	2.97	2.27	1.52	0.92	16.53
87x61-21	44	9.94	72.92	3.92	2.72	1.64	1.05	12.08
87x61-37	43	10.79	72.56	2.85	5.09	1.40	0.98	28.26
87x61-65	45	11.18	74.13	2.89	3.40	1.40	0.94	14.94
87x61-87	42	11.72	72.05	3.97	6.46	1.65	1.04	7.57
87x61-88	44	11.76	74.27	2.95	3.33	1.37	0.98	14.54
ø	it	Ø	n	n	a	p	Ø	n
Ogyefo (61)	41	13.62	72.92	2.86	3.75	1.48	0.95	13.61
87x61-47	40	16.29	71.37	2.77	3.92	1.42	0.93	19.17
Histarch (87)	46	16.33	72.82	2.68	4.74	1.56	0.87	20.71
87x61-46	40	17.18	70.30	2.31	6.43	1.32	0.88	3.56
*SEM (5%)	1.33	1.48	0.97	0.36	1.19	0.09	0.05	4.08
Grand mean	42 36 –	13.41 9.01 -	72.77 68.34 -	2.99 1.99 -	4.08	1.44	0.95	16.30
Range	48	17.53	76.25	5.16	1.63 - 8.23	1.21 - 1.82	0.83 - 1.17	7.57 - 36.31
CV (%)	6.8	20.4	2.5	21.6	54.0	12.3	9.9	46.4

^{*}SEM =Standard error of mean

Conclusions

- ☐ Consumers in Ghana desire non-sweet, high dry matter sweetpotatoes with low or moderate beta-carotene content
- □ Genetic variability was significant for the traits studied and much of this genetic variation was additive in nature
- ☐ Significant negative heterosis for sugar content is very important in breeding for non-sweetness
- □Non-sweet, high dry matter hybrids were identified
- □ Adding high beta-carotene content to these types may require many cycles of selection
- ☐ Lack or poor flowering was a problem

Acknowledgements

THANK YOU FOR YOUR ATTENTION

Supervisors, family and friends