

Who Are We Breeding For?

Sweetpotato Profit as Market

Groups:

- 1- E &C: Ethiopia, Rwanda, Kenya
- 2- Southern Africa
- 3- West Africa
- 4- E & C: Uganda, Tanzania, Burundi

- What is your key target group?
- What traits meet their needs?
- How do you assess the preferences of the target group?
- At what stage in the breeding cycle do you assess preferences?
- In your program, which variety best meets current preferences of this key target group?
- How widely has this variety been adopted?

Target Groups (23 Breeders)

Southern TOTAL East & Central West Africa USA KE TZ UG ET RW BU MZ MA ZM SA MAD GH **Target Group** ΝΙ BF Farmers Poor Farmers Children Women (Mothers/Pregnant Women) Smallholder Farmers Commercial Producers National Breeders Traders Processors Industry Groups Consumers **Rural Consumers** Urban Consumers Malnourished people Health remedial centres Supermarket ventures

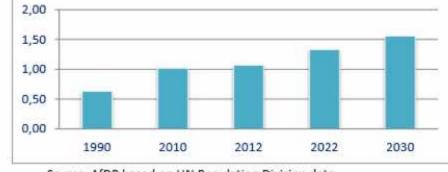
SPHI Sweetpotato Profit as Mann Initiative

Traits

	TOTAL	East	t & C	entra	al			Sou	ther	n		1	Wes	t Af	rica	USA
Traits		KE	TZ	UG	ET	RW	BU	MZ	MA	ZM	SA	MAD	GH	ΝΙ	BF	
Yield (roots)	17	2	2	2	1	1		1	1		1		4	1		1
Early maturing	5	1	1									1	1		1	
Virus resistance	6	1		1	1								2		1	
Biotic stresses	5		2	1							1		1			
Fusarium resistance	2										1					1
Soil rot resistance	1															1
Root Knot Nematode resistance	1															1
Weevil resistance	4				1				1		1		1			
Alternaria resistance	1										1					
Abiotic stresses	1												1			
Drought tolerance	5		1						1		1		1		1	
Beta-carotene content (nutrition)	15	2	2	2		1	1	1	1	1			3	1		
Mineral content (nutrition)	3						1	1					1			
Good taste	3			1								1		1		
High dry matter	15	2	1		1	1	1	1	1	1	1	1	3	1		

Traits

	TOTAL	East	& Co	entra	I			Sout	therr	ו			West	t Afr	ica	USA	
Traits		KE	ΤZ	UG	ET	RW	BU	MZ	MA	ZM	SA	MAD	GH	ΝΙ	BF		
Starch quality	3							1					1	1			
Non-sweet	2												2				
Sweetness	2									1	1						
Good cooking qualities	1	1															
Processing quality	1															1	
Storage ability/long-shelf life	2	1													1		
Root shape	4	1									1			1		1	
Root size	2													1		1	
High quality seed	1													1			
Thick vines/vine vigor	2												2				
Leaf quality (eating)	1									1							
High foliage yield/Dual purpose	2					1						1					

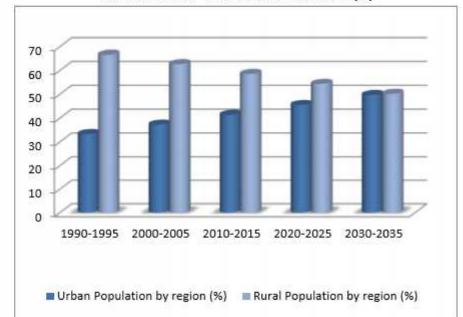

At what stage do you assess SPHI preference?

Sweetpotato Initiative

	TOTAL			East &	Centra	al 👘			S	outher	n 🚽	1	W	est Afr	ica	USA
When do you assess preference?		KE	ΤZ	UG	ET	RW	BU	MZ	MA	ZM	SA	MAD	GH	NI	BF	
On-farm trials with farmers	10	1		2	1	1	1	2				1		1		
Advance selection stage	10	1	2	1		1			1			1	2		1	
Various yield trials	4			1					1	1				1		
Uniform yield trial/Multi-locational	4	1	1								1		1			
Preliminary trial tried but farmers confused	1														1	
Demonstration trials	1										1					
2nd yr selections & onwards: NIRS chemistry	1															1
3rd yr selections & onward for taste tests	1														-0	1
In the initial stage to inform choice of candidate clones for improvement	3				1								2			
Before hybridization	1			1												

The World is Changing

GRAPH 1 : AFRICA TOTAL POPULATION (BILLIONS)

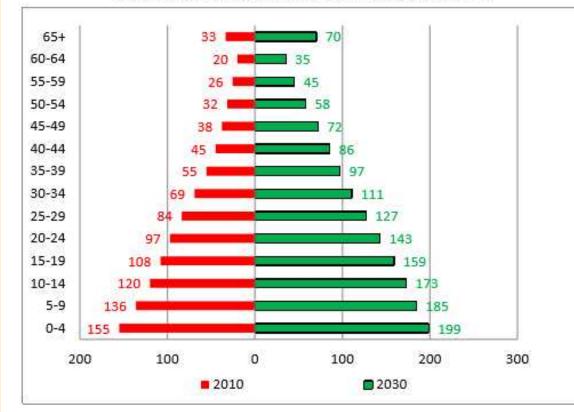


Source: AfDB based on UN Population Division data.

1.6 billion in Africa by 203019% of World's Population

GRAPH 8: AFRICA- URBAN-RURAL POPULATION (%)

Sweetpotato Prefit and the linitiative



Source: AfDB based on UN Population Division data.

Urbanization rate highest in world By 2035, more urban than rural residents

The Demographic Balance is Shifting

GRAPH 7: AFRICA POPULATION BY AGE GROUP 2010 AND 2030

Source: AfDB based on UN Population Division data.

By 2030:

More young people relative working age groups

SPHI

Sweetpotato

Also, more elderly surviving

How can we understand how to breed better now and for the future?

 Examples from several projects (NextGen Cassava) & the private sector (Nestle's & HZPC Holland)

SPL

- Mix of food scientists, socio-economists & breeders: Quality Traits
- Varietal adoption decisions are the product of the interaction between:
 - 1) the characteristics (traits) of the variety (V),
 - 2) the characteristics of end users (U), and
 - 3) the characteristics of the socioeconomic environment (E).
- Are there engendered traits we are failing to understand?
- Private sector develops typologies by classifying individuals into types of users (segments)

Key Points from Nestle

- Consumer-centric approach. The end user is a key player.
- Understand why consumers behave how they do (focus groups, individual interviews, ethnographic research)
- Trained assessors to monitor sensory attributes discover commonalities in consumer preference drivers to shape nationally- or regionally-accepted products
- Sensory attributes don't vary much for traditional foods from village to town, but it becomes more about prioritizing sensory against services, e.g. convenience
- Note, however, that only 50% of the ideas make it...

Key Points from HZPC

- There is not one perfect potato: there are many perfect potatoes, depending on the clusters and many other factors.
- Heavily invested in high-throughput texture analysis
- 350 flavor components make or break the quality of the potato
- Sugar is the most important piece for processing trait profiling
- Most quality traits have medium to high heritability and are multi/polygenic in nature
- Developing SNP markers for potatoes: about 20-25 SNP markers may explain 80% of variance

Where are we with Sweetpotato?

- BMGF commissioned study: Root, Tuber, and Banana Textural Traits--- literature review
- Paucity of literature on sensory traits in SSA
 - Missed Ray & Tomlins 2010 book:
 Sweet Potato: Post-harvest Aspects in Food, Feed, & Industry
- G X E interactions can affect textural traits, making breeding more challenging
- Tomlin's work found starch, taste & sweetness were most dominant sensory attributes for consumers. Stickiness also key.
- Starch digestibility & pasting qualities vary widely by variety
- Sugar composition changes on cooking, more maltose..

Note From Marketing, Processing & Utilization Community of Practice

- Need to start considering more nutritional attributes affecting processing & include in catalogue with traits
 - Fried foods
 - Starch content
 - Reducing sugar content
 - Amino acid Asparagine (browning)
 - Moisture content (already reporting)
 - Puree
 - Sugar content after cooking
 - Amylase activity
 - Fiber—stringiness
 - Flour
 - Ability to retain beta-carotene after heating
 - Starch as a thickening component; Dry matter content
- Need to breed more for shape (oblong) and form (no bumps) and size (200-300 grams)
- How to better capture odor? Seems to be an issue especially with OFSP.

Developing Consumer Profiles

- What are 3 distinct market segments in your sub-region/country for which distinct sweetpotato varieties are needed? Now & in the future...
- What are the key traits for each of these segments?
- Which of these traits could be determined using Near-infrared spectrometry (NIRS) technology or another fast throughput method?
- How should we approach confirming these consumer profiles and estimate the future size of the different market segments?