

The Genomic Tools for Sweetpotato Improvement Project – GT4SP

Bill & Melinda Gates Foundation Seattle, WA

Beginning the Discussion

Craig Yencho Department of Horticultural Science North Carolina State University Raleigh, NC USA

SASHA/GT4SP Annual Sweetpotato Breeders Meeting Colline Hotel, Mukono, Uganda June 2-5, 2015

L96-117 x NC415 – Think about the opportunities in this cross...

Functional Food Products Anthocyanins -Carotene Phenolics Lower-glycemic index

New flavors Exciting colors Different sugar, starch and texture profiles Lower acrylamide levels?

The challenge is...

How do we decide what to develop and what tools do we use to get there?!

HELLO! COVINGTON

Ending America's dependence on foreign vodka.

THE BEST YAM VODKA ON EARTH"

COVINGTON GOUGHER HADRA

And in Column 2 is not the Owner, the Owner,

GOLD MEDAL WINNER - 2013 SAN FRANCISCO WORLD SPIRITS COMPETITION!

COVINGTON SPIRITS LLC SNOW HILL, NC - COVINGTONVODKA.COM

NC Sweet Potato Exports

Exports now account for between 10% and 20% of production

Growth of Sweetpotato Fries Jan.'09 – June '10

Impressive, but this represents < 2% of total fry market

Estimated Foodservice Volume

More types of SP varieties = more traits to evaluate

1997 (total traits evaluated = 28)	2014 (total traits evaluated > 50)	
Yield (Total, No. 1, canner's, jumbos, culls)	Yield (Total, No. 1's, petites, canners, jumbos, culls)	
Maturity (E, M, L)	Maturity (E, M, L)	
Storage root shape and appearance (6 traits)	Storage root shape and appearance (6 traits)	
Skin color and texture	Skin color and texture	
Flesh color – O, W	Flesh Color – O, W, Y, P	
Dry Matter Content	Dry Matter Content - Starch, amylose:amylopectin	
Skinning	Skinning	
Taste – Baking test (6 traits)	Taste – Baking test (6 traits), plus glucose, sucrose, fructose, maltose, total sugars	
Storage	Storage – Internal beak-down, browning potential	
Disease resistance – FW, SSR, RKN	Disease resistance – FW, SSR, RKN, FLD Screen, SPFMV	
Sprouting behavior	Chip and fry tests (2-3x/yr)	
	Anthocyanin profiling	
	Sprouting behavior	
	Cut root piece potential	

US Sweetpotato Growth 1994 - 2014

Global Sweetpotato Production

(2000 - 2006)

Sweetpotato Production

Areas of Cultivation and Average Yields

Source: International Potato Center: World Sweetpotato Atlas https://research.cip.cgiar.org/confluence/display/WSA/Global+Sweetpotato+Cultivation

African Sweetpotato Production Trends 1993-2013

Source: FAOSTAT3.FAO.ORG (March 2015)

The SASHA Project – Sweetpotato Action for Security and Health, 2009-2014 Lead Institute: International Potato Center

Major Progress in 4 Key Areas

- **1. Population Development & Varietal Selection**
- 2. Seed Systems
- 3. Delivery Systems (proof-of-concept)
- 4. Management and Sweetpotato Support Platforms

BILL& MELINDA GATES foundation

Focus 1 : Breeding & Varietal Development New Populations

GOAL 1: Generate a radically expanded range of sweetpotato varieties that combine different quality characteristics with significant improvements in yielding ability

- Generate populations to meet dominant needs of users
- All sites: High dry matter
- East & Central Africa: virus-resistance, orange-fleshed, dual purpose for animal feed
- Southern Africa: drought resistance, orangefleshed
- West Africa: non-sweet sweetpotato, orange & white-fleshed

Focus 2 : Breeding & Varietal Development New Breeding Methods

GOAL 2: Redesign sweetpotato breeding systems in Africa to produce varieties in fewer years (3-4) than currently (7-8 years) - "accelerated breeding"

- More sites at the earliest stages of breeding to substitute for fewer sites over more seasons
- At least one site being the "tough" selection conditions; for instance, consistently drought stressed
- In February 2011, released 15 new, more drought tolerant OFSP in Mozambique
- Also released varieties using accelerated breeding in Malawi and Rwanda

Focus 3 : Breeding & Varietal Development

GOAL 3: Exploitation of Heterosis -

Demonstration that heterosis exists for root and foliage weight... but not for quality traits?

- A) Working with two heterotic genepools, on average for first
 - hybrid population:
 - 22.9% root yield jump (dry matter basis)
 - 7.8% more biomass production.
- B) Potential of further yield jumps by selecting the best "hybrid

family parents"

- up to 100% more root yield (dry matter basis)
- up to 85% more biomass production.
 - These 2nd hybrid populations now underway in Uganda, Mozambique, and Peru
 - In Uganda, distinct populations formed using molecular markers

Focus 4 : Management & Sweetpotato Support Platforms

GOAL 4 : Research organized around breeding platforms that integrate and support the work of institutional partners in each sub-region

- Provide technical backstopping
 - Special emphasis on Alliance for a Green Revolution (AGRA) supported national breeding programs and PhD training programs (ACCI & WACCI)
- Assure clean germplasm exchange
- Assure gender-sensitive design and implementation
- Assure comparable data collection between countries engaged in the breeding and germplasm exchange
- Facilitate information exchange

Each Platform with Quality Lab and Clean-up Capacity

Near Infrared Spectrometer enables rapid assessment of major macro- and micronutrients

Screen houses essential for maintaining stocks of disease free vines as primary foundation material

Current Status of Sweetpotato

- The importance and potential of SP is becoming widely recognized across the globe.
- Many public and private organizations recognize the superior nutritional value in SP compared to many other staple crops and investments are increasing.
- SASHA "1" has been very successful new breeding programs (4-6), new varieties (18+), 3 region SSP's established, NIRS technology introduced, seed systems, virus studies, value-added POC's, etc.
- SASHA "2" and Sweetpotato for Profit and Health Initiative (SPHI) recently launched.
 - See http://sweetpotatoknowledge.org/

In short.....A lot of people are more interested in sweetpotato than ever before!!!

However....genomic resources for sweetpotato are noticeably lacking!!

Sweetpotato Genomics Convening A "Vision" for SP Improvement in SSA BMGF, Seattle, WA June 3-5, 2013

With the help of the SASHA project, sweetpotato is poised for significant growth in SSA.

However, to fully realize SP's true long-term potential, we need to invest in modern breeding tools, and integrate them into applied breeding efforts connected to improved seed systems and market-based value-chains.

A "Vision" for MAB Breeding in SSA

Breeding pipeline investments should include:

- Genomic Resources
 - A reference genome
 - Marker development we are way behind the curve....
 - A robust set of SNP markers and a low-cost genotyping platform
 - Advanced laboratory sequencing linked with developing country phenotyping and breeding activities
 - 2x and 6x mapping, training and test populations

• Bioinformatics, analytics and database resources –

- Improved web-based bioinformatic resources
- New database, data collection and phenotyping options
- New analysis resources
- Human Resources and Capacity Development
 - Continue to assemble and develop a dynamic team of breeders and allied disciplines
 - Training in the use of traditional and genomic breeding methods
 - Effective communication and collaboration
 - Multi-institutional training and capacity development

McKnight Foundation Collaborative Crop Research Program, Est. 1993

McKnight Foundation Collaborative Crops Research Program

- Promote crop research partnerships between developing and developed countries
 - Developing country partners lead
 - Long-term projects 8-10 years
 - Promotes capacity building and increased scientific infrastructure
 - NARO/NCSU/NRI Partnership (1996 2015)
 - Development of high yielding, high dry matter, orange-fleshed cultivars with increased resistance to viruses and insects.
 - Lead PIs, Drs. Robert Mwanga, Gorrettie Ssemakula, NARO
 - Drs. Craig Yencho, NCSU and Phil Stevenson, NRI

UNIVERSITY Natural of Resources GREENWICH Institute

NC STATE UNIVERSITY

Think and Do ncsu.edu

Development of High Yielding Multiple Resistant Sweetpotato Germplasm

Sweetpotato production constraints in Uganda

NC State Sub-contract Sweetpotato Genetic Mapping

Dr. Jim Cervantes, Dr. Benard Yada Dr. Gorrettie Ssemakula, Dr. Robert Mwanga, Ken Pecota, Craig Yencho

NC STATE UNIVERSITY

Think and Do ncsu.edu

First

Linkage groups of 'Beauregard'

Impact of sweetpotato weevils (SPW) in SSA

- Yield losses of 67-100%
- Oviposition and feeding
- Pathogenic microbial accumulation
- Sesquiterpenes
- Impeded translocation of phytochemicals
- Difficult to manage

Frequency Distribution of Mean Sweetpotato Weevil Severity

'New Kawogo' (NK) x 'Beauregard' (B) mapping population at NaCRRI (A), NgeZARDI (B), NaSARRI (C), and overall mean across sites and seasons (D)

80 6 4 2 2 Number of clones NK NK Β В Α Mean severity Β Mean severity Number of clones Number of clones Number of clones NK Number of clones Number of clones Number of clones NK Β Β Mean severity Mean severity D С

Transgressive segregants = 25

Distribution of mean storage root hydroxycinnamic acid ester content in the progeny and parents of the 'New Kawogo' (NK) x 'Beauregard' (B) across sites

• Broad sense heritability $H^2 = 0.49 \pm 0.0471$ **NC STATE UNIVERSITY**

■ Weak correlation of HCA with field SPW (r=0.103^{cs} P=0.015)

Association of SSR marker loci with the best linear unbiased predictions of overall mean across-sites and seasons sweetpotato weevil severity of genotypes

Marker	Total variance (%)	Most significant allele	R ²	ProbF
IBS11	22.3	IBS11NKB253	0.0443	0.032
lbE5		lbE5B218	0.0311	0.033
lbL16		lbL16NK183	0.0446	0.028
lbO5		IbO5NKB181	0.0233	0.038
J116A		J116ANKB210	0.0806	0.000

A Vision for Sweetpotato Improvement in Africa:

Modern Breeding Tools Increased Potential, Improved Genetic Gain, Reduced Hunger and Poverty

> Craig Yencho NC State University Bill and Melinda Gates Fdn. Seattle, WA June 3-5, 2013

NC STATE UNIVERSITY

Think and Do ncsu.edu

The Genomic Tools for Sweetpotato Improvement Project – GT4SP

Sweetpotato Genome (MSU, BTI, CIP) Bioinformatics (NCSU, UQ, CIP)

Genotyping by Sequencing (NCSU, UQ, CIP, BTI)

Sweetpotato Database: Bioinformatics, Phenotyping & Genomics (CIP, MSU, BTI, NaCCRI)

Sweetpotato Breeding & Capacity Development (NCSU, CIP Peru, CIP Uganda, CIP Ghana, CIP at BecA)

An ambitious project to sequence sweetpotato and develop modern breeding tools for a food crop that sustains million of people in SSA.

Collaborators: Boyce Thompson Institute at Cornell, Michigan State University, University of Queensland, Australia; The International Potato Center, Peru; BioSciences East and Central Africa, Kenya; National Crops Resources Research Institute, Uganda;

Outcomes

- An MAB breeding pipeline that utilizes up- and down-stream breeding methods
- Genomic selection technologies integrated with the SASHA accelerated breeding program
- A new generation of sweetpotato breeders, and a new cadre of molecular geneticists and bioinformatics scientists interested in using the new tools to study sweetpotato.
- Linkage of genomic-based breeding to address the demand of new varieties and "products" will yield maximum long-term ROI on current SP crop improvement investments in SSA.
- Note: We can't expect "omics" to solve all our breeding problems. Conventional breeding will still be the workhorse, but it will offer new solutions for difficult traits.

GTSPI Start-up Meeting, San Diego, CA Jan. 7-9, 2015

