Genetic approaches towards markerassisted and genomic selection, and the challenges in sweet potato

Dorcus C. Gemenet

Sweet potato breeders' meeting, Uganda, 2nd- 5th June 2015

Qualitative vs quantitative traits

Monogenic: diversity at one locus

Polygenic trait: diversity at all loci associated with the trait

Most traits of agronomic importance are polygenic

Traits of importance in sweet potato

- 1. Storage root yield
- 2. Diseases esp. SPVD
- 3. Pests esp. SPW
- 4. Drought
- 5. Quality traits
- 6. Low soil fertility
- 7. Dual-purposes
- 8. Storability

Approaches in QTL dissection

Linkage mapping

Recent recombination
High power
Moderate marker density
Low resolution
Analysis of 2 alleles

Association mapping

Historic recombination
High resolution
Analysis of many alleles
High marker density
Low power

Dissection of QTL based on linkage mapping

6/5/2015

Example of a QTL map in pea

6/5/2015

Dissection of QTL based on association mapping

Nested association mapping

6/5/2015

Could we combine LM and AM???

Nested Association Mapping

- •Recent and ancient recombination
- •High power
- •High resolution
- •Analysis of many alleles
- •Moderate genetic marker density
- •High projected marker density

Genomic selection

LD between M/QTL (high LD)
Trait heritability (high)
Size of training population (high)

 Genetic structure of the trait (Lower no. of QTLs)
 No.of generations after training (Low)

The two approaches...

Nakaya and Isobe 2012

6/5/2015

Challenges in genetic analysis of sweet potato

- Self-incompatibility, inbreeding depression-no homozygous parents
- Unavailability of good quality sequence information
- > Multiple alleles at marker loci and at loci for traits of interest
- Different possibilities of allele dosages across homologous chromosomes
- Large amounts of unobserved marker data based on dominant markers

Challenges...

- Both bivalent and multivalent pairing during meiosis
- Possibility of preferential pairing of different homologs
- Possibility of different recombination frequencies for different pairs of homologs
- Higher number of possibilities for the linkage phases between markers
- Possibility of double reduction during meiosis

Challenges...

Lack of clear distinction in cosegregation due to same homologous chromosome and that due two different homologs that end up together

Current linkage approaches which put strong emphasis on single-dose loci are not appropriate

> No appropriate software for hexaploids

Opportunities?

Genetic Linkage Maps

➤Graphical representation of the genome of an organism

➢Relative positions of genes, molecular markers and phenotypic markers along a chromosome

➢Distances derived from linkage analysis to determine the frequency at which two loci are separated during chromosome recombination

Applications of Genetic Maps

>Allow localization of genes or quantitative trait loci (QTL)

➢ Facilitate introgression of desirable genes or QTLs through marker-assisted selection

➢Allow comparative evaluation of gene order and function between different species

>Provide a framework for anchoring with physical maps

➢ First step towards positional or map-based cloning of genes responsible for economically important traits

Steps in Linkage Mapping

- 1. Creation of mapping population
- 2. Detection of polymorphic loci
- 3. Segregation analysis of single markers
- 4. Estimation of recombination frequencies
- 5. Identification of linkage groups
- 6. Calculation of map distances