# Lecture Overview

- Unit and method of randomization
- Why not simple lotteries?
- Revisiting unit and method
- Variations on simple treatment-control

# Lecture Overview

- Unit and method of randomization
- Real-world constraints
- Revisiting unit and method
- Variations on simple treatment-control

# Unit of Randomization: Options

- 1. Randomizing at the individual level
- 2. Randomizing at the group level "Cluster Randomized Trial"
- Which level to randomize?

# Unit of Randomization: Individual?



# Unit of Randomization: Individual?



# Unit of Randomization: Clusters?



"Groups of individuals": Cluster Randomized Trial

# Unit of Randomization: Class?



# Unit of Randomization: Class?





# Unit of Randomization: School?



# Some examples

- Deworming: randomization at the school level. 75 schools in average 400 students per school
- Information provided to students about returns to schooling: school level
- CCT for employment program in France: randomize at the Job Youth Center
- Public work in Cote d'Ivoire: randomize individuals
- Morocco microcredit: randomize villages

- 1. Can randomize units and follow individuals at a more disaggregated level
- Example: randomize at the school level but follow students
- Deworming: 75 schools, 400 student per school: 30.000 students
- Sample of 4000 students
  - Do not follow every youth in each school (54 per school)

- 2. Need a large number of randomized units
  - Balancing property is true if you randomly assign a large number of units
  - Precision of estimation also depends on the number of randomized units
- A large sample with few randomized units is not good
- Size of the sample do not balance the number of randomized units

#### 3. Need to consider diffusion effects

- Treatment can affect the treated but also other individuals
- Deworming again: worms transmit from one student to the others.
   One treated student has beneficial effects on his/her peers
- Providing information to youth within a class: diffusion of information within the class

- Want to avoid people in the control group being affected by the treatment
- Consider randomizing units that are "small independent worlds"
  - Deworming: randomize at the school level
  - Information: also randomize at the school level
- Follow then a random sample of individuals within the randomized units

### How to choose the level: fairness, politics

- 4. What will people feel about randomization
  - Randomizing at the child-level within classes, parents get angry
- Very important issue
  - Being assigned to the control group should have no impact on individuals
- Level of randomization can help to deal with this issue
- CCT for youth in France: that was the issue

# Lecture Overview

- Unit and method of randomization
- Why not simple lotteries?
- Revisiting unit and method
- Variations on simple treatment-control

# Simple lottery

- Most simple design
- Existing pool of potential participants: 5000
- Given number of slots: 1000
- Randomly assign potential participant to a treatment group or a control group: with proba 1/5

# Lotteries and limited resources

- A case where randomization can naturally arises is when programs have limited resources
  - Case for most programs, especially pilots
- Results in more eligible recipients than resources will allow services for
- Random assignment naturally arises as a way to allocate resources
- Limited resources can be an evaluation opportunity

# Example: firm training in Morocco

- Providing managers of Income Generating Activities with a management training
- 600 IGA registered
- But budget available to provide training for only 200 IGA
- Randomly draw 200 in the 600 population
- Possible to draw randomly 200 in the 600 just rank randomly

# Lotteries: political advantages

- Lotteries are not as severe as often claimed
- They are simple
- They are transparent: can be publicly organized
- Participants know the "winners" and "losers"
- Simple lottery is useful when there is no a priori reason to discriminate
- Can be perceived as fair!
- They are commonly used outside RCT

### Example: Public Work in Cote d'Ivoire

- 12.000 individuals but 3.000 jobs available
- Organize lotteries
  - Registration sessions
  - Randomization session: participant called to draw a paper from a basket and to show it to everybody
- Frequently implemented outside the context of an experiment
- Perceived as fair way to allocate resources

# Lotteries: power

- RCT are implemented because there are questions about the program
  - Does the program work?
- Statistical power is the ability of the experiment to provide the right answer
  - Answer yes when the truth is yes
- Using lotteries achieve the highest power

# What if you have 500 applicants for 500 slots?

- Outreach activities to increase the number of applicants
  - Make some efforts to reach 1000 applicants
- If impossible?
  - Does it make sense to evaluate a program that will never grow over the 500 applicants you have
- Would it be ethical?
  - Need to think about it: what is the usefulness of what you will learn

# Sometimes screening matters

- Suppose there are 2000 applicants
- Screening of applications produces 500 "worthy" candidates
- There are 500 slots
- A simple lottery will not work
- What are our options?

# Consider the screening rules

- What are they screening for?
- Which elements are essential?
- Selection procedures may exist only to reduce eligible candidates in order to meet a capacity constraint
- If certain filtering mechanisms appear "arbitrary" (although not random), randomization can serve the purpose of filtering and help us evaluate

# Consider the screening rules

- However when doing that it is necessary to think about it
- This changes the population that you consider as relevant for the program
- Program is evaluated on this population
  - Program effect can be heterogeneous and different on the marginal population
- Known as randomization bias

# Problems with simple lotteries

- Sometime difficult for **program officers** to accept lotteries
- Better if RCT tasks (randomization, information) are performed by researchers
  - Was very important in France with youth programs caseworkers strongly involved in their "social" role

# Problems with simple lotteries

- Sometimes difficult for applicants to accept lotteries
  - Find it unfair
- Important that applicants' behavior in the control group is not affected by the experiment
  - Hawthorne effect
  - Can also be associated with differential response rate to survey
- If impossible to deal with consider alternative designs

# Lotteries: summary

- Simple lotteries are a very powerful tool
  - Easy to implement
  - Good power property
  - They can be perceived as fair
- They can however have some drawbacks
  - Can be seen as unfair by participants
  - Can fail in matching slots requirements
  - Can be seen as unfair by program officers
- Need sometimes to consider alternative design

# Lecture Overview

- Unit and method of randomization
- Why not simple lotteries?
- Revisiting unit and method
- Variations on simple treatment-control

# Randomization in "the bubble"

- Sometimes a partner may not be willing to randomize among eligible people.
- Partner might be willing to randomize in "the bubble."
- People "in the bubble" are people who are borderline in terms of eligibility
  - Just above the threshold  $\rightarrow$  not eligible, but almost
- What treatment effect do we measure? What does it mean for external validity?

# Randomization in "the bubble"

Treatment

Control

Participants

Within the bubble, compare treatment to control

#### Non-participants

### When screening matters: Partial Lottery

- Program officers can maintain discretion
- Example: Training program
- Example: Expansion of consumer credit in South Africa
- Example: Microcredit in Bosnia. Applicants marginally rejected were randomly assigned

### Phase-in: takes advantage of expansion

- Everyone gets program eventually
- Natural approach when expanding program faces resource constraints
- What determines which schools, branches, etc. will be covered in which year?

# Phase-in design

Round 1 Treatment: 1/3 Control: 2/3

Round 2 Treatment: 2/3 Control: 1/3

> Randomized evaluation ends

Round 3 Treatment: 3/3 **Control:** 0



# Phase-in designs

#### **Advantages**

- Everyone gets something eventually
- Provides incentives to maintain contact

#### Concerns

- Can complicate estimating long-run effects
- Care required with phase-in windows
- Do expectations of treatment change actions today?

# Encouragement design: What to do when you can't randomize access

- Sometimes it's practically or ethically impossible to randomize program access
- Randomize encouragement to receive treatment
- Not every body in the encouraged group will receive the treatment
- Some in the non-encouraged group will

# What is "encouragement"?

- Something that makes some folks more likely to use program than others
- Not itself a "treatment"
- Examples
  - provide information about program availability or just propose participation
  - Deny or not participation in the control group
  - El Mashrou in Egypt: send sms to watch the tv show

# **Encouragement design**



**Assigned** to treatment Encouraged **Assigned** to control Not encouraged

# Encouragement design



**Assigned** to treatment Encouraged **Assigned** to control Not encouraged

# Does it work?

- This is enough to evaluate the program impact
- Specific population of compliers: these who get the treatment because of encouragement
- Compare the average of the two Z groups
- Scale by the share of compliers
- However evaluation is only for compliers

# **Encouragement design**



**Assigned** to treatment Encouraged **Assigned** to control Not encouraged

# Encouragement design

- Need to assume that encouragement only affects treatment
- Example microcredit in Morocco
- Randomly assign villages to two groups
- In one group MFI offers microcredit in the other not
- However only 15% of household offered a microcredit take one
- Can we assume the 85% who were offered a microcredit are not affected?

# To summarize: Possible designs

- Simple lottery
- Randomization in the "bubble"
- Randomized phase-in
- Encouragement design
  - Note: These are not mutually exclusive.

# Methods of randomization - recap

| Design  | Most useful<br>when | Advantages                                                                                                                | Disadvantages                                 |
|---------|---------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Basic   | •Program            | <ul> <li>Familiar</li> <li>Easy to understand</li> <li>Easy to implement</li> <li>Can be implemented in public</li> </ul> | <ul><li>Control group may</li></ul>           |
| Lottery | oversubscribed      |                                                                                                                           | not cooperate <li>Differential attrition</li> |

# Methods of randomization - recap

| Design   | Most useful<br>when                                                                                     | Advantages                                                                                                                                                         | Disadvantages                                                                                                                          |
|----------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Phase-In | <ul> <li>Expanding over<br/>time</li> <li>Everyone must<br/>receive treatment<br/>eventually</li> </ul> | <ul> <li>Easy to understand</li> <li>Constraint is easy to<br/>explain</li> <li>Control group<br/>complies because<br/>they expect to<br/>benefit later</li> </ul> | <ul> <li>Anticipation of<br/>treatment may impact<br/>short-run behavior</li> <li>Difficult to measure<br/>long-term impact</li> </ul> |

# Methods of randomization - recap

| Design        | Most useful<br>when               | Advantages        | Disadvantages                            |
|---------------|-----------------------------------|-------------------|------------------------------------------|
| Encouragement | <ul> <li>Program has to</li></ul> | •Can randomize at | <ul> <li>Measures impact of</li></ul>    |
|               | be open to all                    | individual level  | those who respond to                     |
|               | comers <li>When take-up is</li>   | even when the     | the incentive <li>Need large enough</li> |
|               | low, but can be                   | program is not    | inducement to improve                    |
|               | easily improved                   | administered at   | take-up <li>Encouragement itself</li>    |
|               | with an incentive                 | that level        | may have direct effect                   |

# Lecture Overview

- Unit and method of randomization
- Why not simple lotteries?
- Revisiting unit and method
- Variations on simple treatment-control

# Multiple treatments

- Sometimes core question is deciding among different possible interventions
- You can randomize these programs
- We might have two treatments: 2 and 1. We can measure the impact of 2 compared to 1.
  - Just need to assign either to 2 or to 1
- We can also measure impact of 2 and impact of 1
  - Need in addition to assign to a control group

# Multiple treatments: example

- Public Work as treatment1
- Public Work + Business training as treatment2
- Control group
- Treatment 1 compared to control
- Treatment 2 compared to control
- But also treatment2 compared to treatment1
- Is it possible to turn short term Public Work gains into long term gains?

# **Multiple treatments**

### Treatment 1 Treatment 2 Treatment 3

# **Cross-cutting treatments**

- Test different components of treatment in different combinations
- Test whether components serve as substitutes or compliments
- What is most cost-effective combination?
  - Can help answer questions, beyond simple "impact"
  - Actually interests both practitioners and researchers

# Two opposite examples

- Example 1: business
  - control
  - Treamtent 1 Micro credit
  - Treatment 2 Business training
  - Tretament 1+2 Microcredit+Business training
- Example 2: ultra poor
  - Control
  - Treatment: package of interventions (asset transfer, consumption stipends, training, health)

# One last rule to end

- Order of field action matters
- 1. Register units
- 2. Do baseline survey
- 3. Randomize
- 4. Announce treatment status
- Important for example not to run baseline after revealing status

# Conclusion

- There are many ways to introduce randomization
- Can be done in a very flexible way
- So as to fit operational constraints
- Can also be done in a sophisticated way to measure the impact of combination of treatments

# THANK YOU!