

CGIAR Consortium

Biofortification Overview

Anna-Marie Ball, PhD

Head of Strategic Alliances - Africa

HarvestPlus c/o IFPRI

2033 K Street, NW • Washington, DC 20006-1002 USA

Tel: 202-862-5600 • Fax: 202-467-4439

HarvestPlus@cgiar.org • www.HarvestPlus.org

Overview

- 1. Global Situation
- 2. The Process of Biofortification
- 3. Estimated Average Requirements (EARs).
- 4. Breeding Nutrition Targets.
- 5. HarvestPlus Global Convenor of Biofortification

Micronutrient Deficiencies 2 Billion People!

Vitamin A deficiency

- Supplements reduced child mortality by 23%.
- 375,000 children go blind each year; compromised immunity.

Iron deficiency

- Impaired cognitive abilities that cannot be reversed.
- 82% of children < 2 years in India are anemic; anemia also contributes to maternal mortality.

Zinc deficiency

Increased incidence/severity Diarrhoea/pneumonia; stunting.

• 2 billion people at risk; 450,000 deaths per year.

Biofortification - The Process

- Continuous process of crop breeding to improve yields and resistance to pests, diseases, and climate.
- Innovation for Health; adding nutrition as a desirable breeding trait.
- New varieties developed in CG centres, then transferred to countries.
- National Agricultural Research Services (NARS) conduct:
 - crossing/adaptive breeding.
 - test for 2 3 years in different terrains, soils, and climates.

Biofortification Methods

1. Conventional Breeding

- 2. Genetic Modification (Biotechnology, modern biotechnology, gene technology, recombinant DNA technology, or genetic engineering)
- 3. Foliar Application (Zinc Fertiliser Spraying)

Global Warning!

- 1. Biofortification is **NOT** GM!
- 2. Biofortified crops do not pose a threat to World-Domination!
- 3. Please read 1; above; again!

Crops for Africa & Release Dates

2007

Orange Sweet Potato

Vitamin A

(Uganda, Mozambique, and elsewhere)

Crops for Africa & Release Dates

2011

2012

2012

Cassava

Vitamin A (Nigeria DR Congo)

Beans

Iron (Zinc) (Rwanda DR Congo)

Maize

Vitamin A (Nigeria Zambia)

Crops for Asia & Release Dates

2012

2013

2013

Pearl Millet

Iron (Zinc) (India) Rice

Zinc (Bangladesh India) Wheat

Zinc (India Pakistan)

Other Biofortified Crops

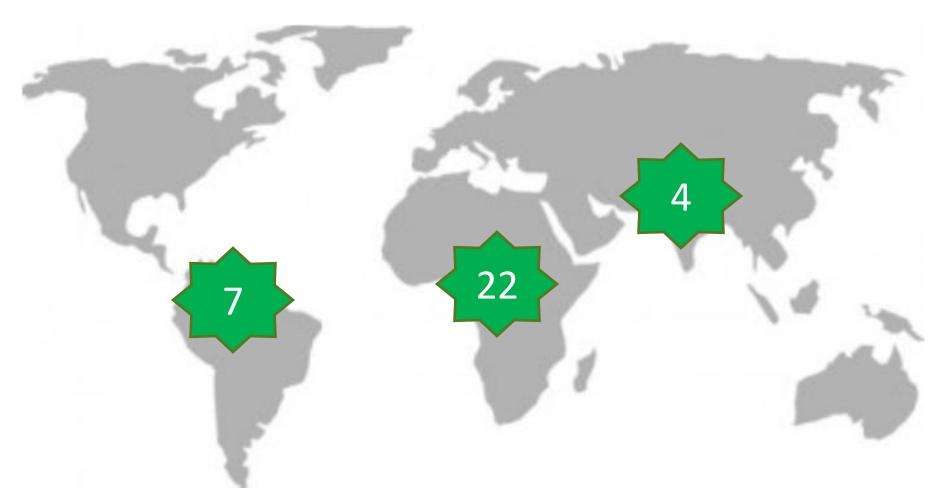
Potato Iron

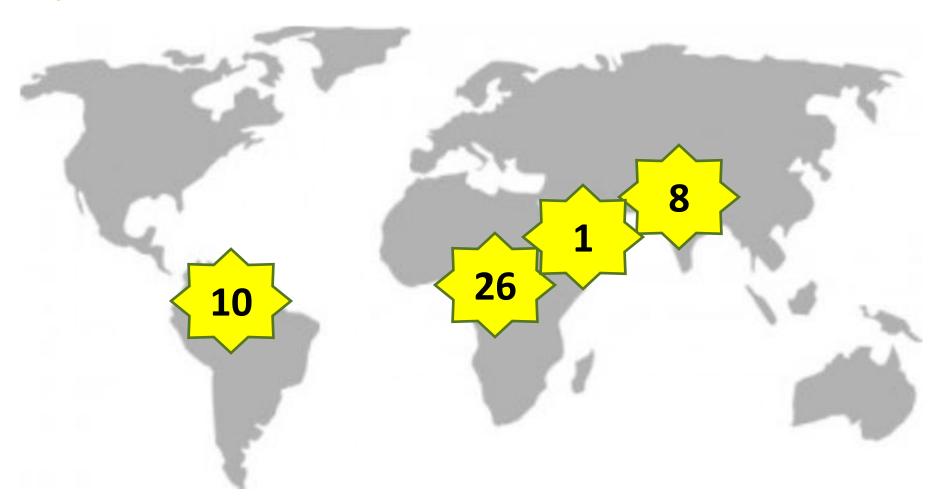
Lentil Iron, Zinc

Sorghum Iron, Zinc

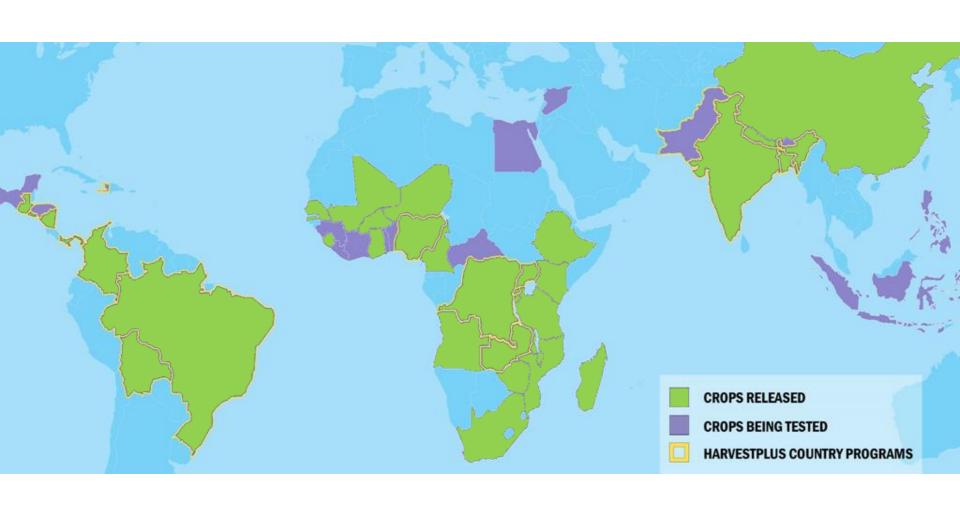
Banana/Plantain
Vitamin A

Cowpea Iron, Zinc





Biofortification - Released



Biofortification - Testing

Biofortified Crops - Released/Testing

Biofortification - The Evidence

- Careful breeding increases nutrient levels without reducing yields.
- Extra nutrients in crops improve micronutrient status.
- Farmers are growing biofortified crops, and consumers are avidly eating them.
- Biofortification is cost-effective, centralised, and a once-only investment. Continually improved varieties are still needed.

When is a Crop Biofortified?

Breeding Research Nutrition Research Delivery to Farmers

"Estimated Average Requirement" (EAR) Drives Breeding Targets

Initial Nutrient Concentration – Raw Food

% Nutrient Retained After Harvest (Storage / Processing / Cooking)

Amount of food consumed

% nutrient absorbed -> utilized (bioavailable)

Contribution to Nutritional Sufficiency (30-50% EAR)

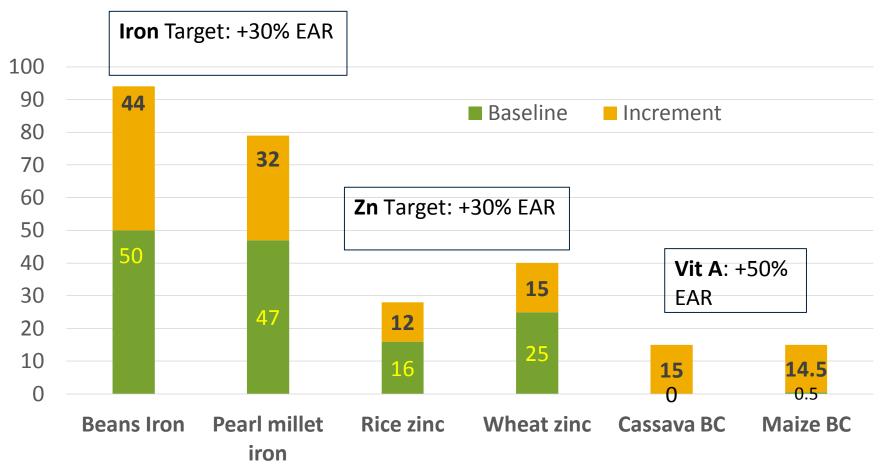
Breeding Targets - Woman of Reproductive age

(Non-pregnant, Non-Lactating)

Crop	Food Eaten (g/day)	x	"Additional nutrient concentration (μg/g)"	X	Nutrient Retained after storage & processing (%)	x	=	=	Nutrient Absorbed (μg/day)	Daily requirement (µg)
Maize & Cassava	400	X	15.0	X	50	X	8.0	=	240	Vit. A = 500
Beans	200	X	44.0	X	90	Χ	5.0	=	396	Iron = 1460
Rice & Wheat	400	X	8.0	X	90	X	25.0	=	720	Zinc = 1860

Boring Maths!

```
Nutrient Absorbed = % EAR
Nutrient Required (Estimated Average Requirement)
```


For:

```
Vit A = 48%
Fe = 27%
Zn = 39%
```


Nutrient Target Levels by Crop (µg/g)

(Estimated Average Requirement [EAR] for Non-Pregnant / Non-Lactating Women)

Micronutrient Target by Crop (PPM)

Crop	Genetic Variation (Max Discovered)	Average (Non- Biofortified)	Target Increment	HarvestPlus Nutrition Target
Iron Bean	125	50	44	94
Iron Pearl Millet	130	47	30	77
Zinc Rice	30	16	15	28*
Zinc Wheat	70	25	15	40*
PVA Cassava	15	0.5	15	15.5
PVA Sweet Potato	300+	2	28	30
PVA Maize	15	0.5	15	15.5

^{*} Target not optimal but achievable with conventional plant breeding techniques.

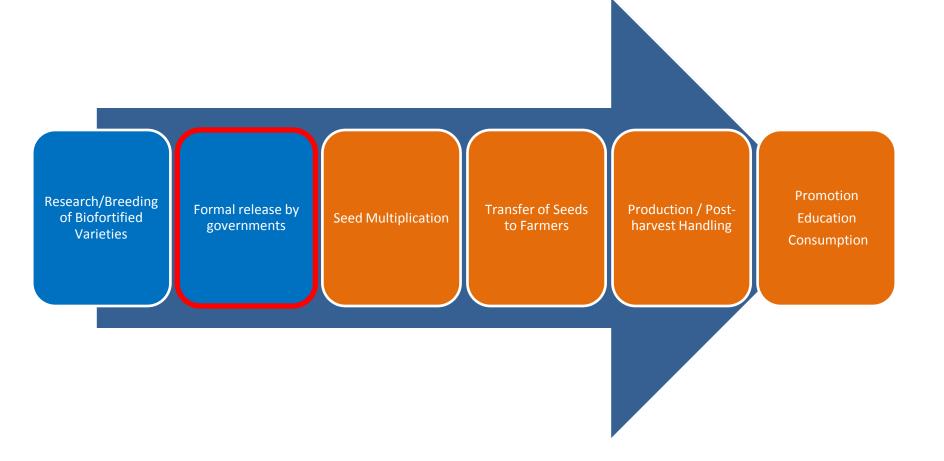
Frequently Asked Questions

- Not Genetically Modified.
- Cannot "overdose!"
- Supports, (not undermines), bio-diversity and varied diets.
- Does not just "make bad food better."
- "Visible" versus "Invisible" traits affecting consumer acceptance.

HarvestPlus global convenor of biofortification

Scale up delivery in target countries and expand delivery to new countries

Target Countries


- Implement country level business plans
- Food Basket Approach

Partner Countries

- Scale up delivery of prioritized crops <u>through</u> <u>partnerships</u>
- Develop & deploy technical assistance to support partnerships

Breeding to Consumption

HarvestPlus - Breeding

HarvestPlus **funds** breeding of biofortified crops in:

CG Centres – IITA, CIAT, CIP, CIMMYT, IRRI, ICRISAT

NARS – many countries

Universities

Annual budget going to breeding – 10 million

Country Approach

One crop ...

Food Basket ...

Partners for Scaling

- Scaling Up and Out with Lessons Learned
- Commercialisation (where possible) and thus sustainability
 - Advocacy bottom to top

HarvestPlus - Africa

Target Country	Crops
Nigeria	VA Cassava, VA Maize, Sorghum, Pearl Millet (OFSP)
DRC	High Fe Beans, VA Cassava , VA Maize, OFSP
Rwanda:	High Fe Beans, VA Maize (OFSP)
Uganda	OFSP , High Fe Beans, VA Maize, VA Cassava, Pearl Millet
Zambia	VA Maize (High Fe Beans, OFSP)

Seed Multiplication

- NARS provide access to released seed / stems /vines for multiplication.
- Multiplied and distributed via:
 - Seed companies.
 - CBO / farmer groups.
 - Government agencies.

Seed Quality Control

- Capacity-building needed with Multipliers.
- Different seed quality available:
 - "Quality-Declared" seed.
 - o "Certified" seed.
 - "Truthfully Declared" seed (India)

Getting Seeds to Farmers

- Delivered by commercial and non-commercial sources:
 - Seed companies.
 - Agro Dealers.
 - o Farmer to Farmer.
 - Project / NGOs.
 - Government systems.

Encouraging Production

- Creating demand for Biofortified Seeds with Farmers by:
 - Extension staff training.
 - o Farmer training.
 - Lead mothers and clinics.
 - Nutrition messaging, integrated with agronomic and marketing messages / training.

Partnerships for scaling-up

Promoting Consumption

- Innovative campaigns are needed to encourage production and consumption by target community.
- Many tested methods: Radio Dramas, print (and other media), Community Theatre, consumer tasting / cooking demonstrations.

Consumer tasting sessions with Orange Sweet Potato in Uganda

HarvestPlus / Nollywood collaboration on Yellow Cassava in Nigeria

HarvestPlus joint roadshow with afroPop, rap, R&B musicians to promote iron beans in Rwanda

Thank You!

Stay up-to-date with HarvestPlus:

www.harvestplus.org

Photo: HarvestPlus

It Works!

Stay up-to-date with HarvestPlus:

