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Plant breeding

Systematic procedure for genetic improvement
through crossing plants with desired traits and
selecting progeny with improved performance
and/or improved combinations of traits.

‘Accelerated and targeted evolution \




Crop Improvement: Critical considerations

Phenotyping with special attention to Genotype X




Challenges of plant breeding

A challenge for modern breeding — to develop and integrate
phenotypic and genotypic information to understand and
Improve traits of interest

Selections of parents for a cross

with traits of interest Selection

Crossing plants with desirable traits Reliability

to create new genetic diversity

Selection and testing of superior Labor
recombinants input

Release, distribution, and

Costs

commercialization of new cultivars

General steps in plant breeding (modified after
NN Gepts 2002)



Phenotypic selection: Selection based on
appearance and performance

Natural
tPopuIation
Selected individuals
(phenotypic selection)

| Progeny |
Testing
Elite (high EBV)
— individuals
reeding -
| Population |

Repeat over
generations




Concept of Marker assisted selection

Molecular breeding

Association between molecular marker and causative gene

w .Causatlve gene

Y¢ SNP within gene
Y¢ SNP in LD with gene

Hirschhorn & Daly, 2005  coNvENTIONAL BACKCROSSING ~ MARKER-ASSISTED BACKCROSSING
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Marker-trait association identification
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Predicting the phenotype or selection of
progeny with deswable traits
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Overview: Linkage map and QTL mapping

(Segregating Populations>
—> Genotypi
Phenotyping

Scoring a large number of
Phenotyping Polymorphic markers in the
populations for trait

populations.

ll J

Steps to develop linkgae maps|*]




Genetic (linkage) mapping

Determining the location of elements (genes)
within a genome, with respect to identifiable
landmarks (molecular markers)

Three key concepts to understand genetic mapping




Linkage, crossing over and
recombination

Mendel's Law of Independent [ -
Assortment applies well to
genes that are on different
chromosomes.

But!

loci of two genes are close
enough together on the same
chromosome = “linked” and
they tend to segregate
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Play  Pauw . Audio  Test

tog eth e r I n Crosses . Crossing over during meiosis allows recombination of genes

between homologous chromosomes. This alters the linkage between
genes on the same chromosome.




Crossing over recombination and
map distance

Two types of gametes are possible

Parental gametes= If crossing over does not occur
Recombinant gametes= If crossing over occurs

The probability that
crossing over will lead
to the separation of
two genes on a
chromosome is
proportional to the
distance between them

Percent recombination
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Construction of a genetic map

Frequency of recombinants in the progeny helps to
estimate the distance between markers.

A genetic map

Is an ordered list of the genetic loci along a
particular chromosome

Unit: Morgan/centiMorgan also known as the
genetic map distance: d

Segregating population: A population with known relationships,
segregating for the traits of interest

Genetic markers: A variation which may arise due to mutation
or alteration in the genomic loci that can be used to identify
Individuals




Segregating population
: II X II -
More than 6
w generations of

selfing

F2 II RILs

Nl
v v
2R
v ¥

“— < <«




Molecular markers

DNA Based markers

<rRandomly Amplified Polymorphic DNA (RAPDSs)
<-Amplified Fragment Length Polymorphism (AFLPs)
<-Microsatellites/Simple Sequence Repeats (SSRs)
<-Single Nucleotide Polymorphism (SNPs)

Morphological markers
Isozymes

Properties of good marker




Simple Sequence Repeats (SSRs)
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Genotyping

<A large number of genetic
markers are tested on a
segregating population F1=P1xP2
: 1 P1P2
(genotyping) : W )
<> Data file with marker

score for each individual o
the population

<> Software is used to

T
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Marker data

estimate recombination Key:
frequency of each marker A=Homozygous for allele P1
and order the markers B=Homozygous for allele P2

lon link r H=Heterozygous
along a age group Vel st

(chromosome)




Multiple samples per sequencing run

Samﬂle 1

Sample 2

Sample 3
_—

1 Barcoding Step

Sequencing

-



Let’'s construct a genetic map

Recombination frequency (RF) =

number of recombinants/total number of
individuals*100

RF of 1 %= Genetic map distance of 1 cM

Gametes # of gametes
ABC 1080
abc 1071
AbC 293 A-B B-C A-C
aBc 282 293 293 78
aBC 78 282 282 66
Abc 66 78 6 6
ABC 6 66 4 4
abC 4 719 585 154
Total 2880 0.250 0.203 0.053
A C B
Fos 1 20.3 |

distance in map units

19



Mapping functions

» Haldane: There is no
interference due to crossing |
over and crossing over
occurs randomly and |
independently.

» Kosambi: Constant and

Haldane

Kosambi

Map Distance, x

0.5

specific level of interference |

and a small correction for
interference.
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Quantitative trait locus (QTL)
mapping

Quantitative trait locus (QTL): A genomic region
that is associated with a guantitative trait




Phenotypic trait

<-Qualitative trait
<-Quantitative trait

Qualitative trait

Fall into discrete classes, controlled by
two or many alleles of single gene and
less influenced by environment e.g., blood
type, seed coat color, many diseases

5
< 14
5 . The wrinkled-seed
" . . 1 character of pea is
= A : AB caused by a transposon-
ABO gene

like insertion in a gene



Quantitative trait

The quantitative trait has Parents
continuous variation (bell-shaped
curve, normal distribution) and is
usually controlled by many genes

of small effect, or by a few genes \
of large effect e.g., Height,

Welight, Biomass, Disease =

genotype A genotype B

resistance

F1
But l
A single polymorphic locus with . | |
multiple, differentially expressed \
alleles can also result in |
continuous variation e |

phenotype



Variance Components
Vp=Vg+ Ve + Vg
» = phenotypic, s = genetic, ¢ =
environmental
Ve = variation associated with the
genetic and environmental interactions

V; (The total genetic variation)
Vg =Vt VptYV,

A=additive, D=dominance, I=interaction due to epistatis

Additive genetic variance (V,): Each allele has a
specific value that it contributes to the final
phenotype

Dominance genetic variance (Vp): Dominant gene
action masks the contribution of the recessive

alleles at the locus

Example

AABB X aabb Parents

AaBb F1

A=4 U, a=2 U, B=6 U,
b=3 U

Additive effect
F1= 15 U (4+2+6+3)

Dominant effect
F1=20 U (4+4+6+6)



Variance Components

Interaction genetic variance (V,)/epistasis:
Due to masking of genotypic effects at one locus by
genotypes of another locus

Environmental variance (V)
Due to difference in magnitude of performance of
genotypes in different environments

Genotype-Environment interaction (Vgg)
Due to difference in the direction of performance of
genotypes in different environmental circumstances

The total phenotypic variance can be rewritten as
Vp=Vat+Vp+V + Vg + Ve




Heritability
The proportion of the genetic variance to the total variance

Broad-sense heritability: Ratio of total genetic variance to

total phenotypic variance
H2 = VG/VP

Narrow-sense heritability: Ratio of additive genetic
variance to total phenotypic variance
h2 = VA/VP

<+ Specific to the population and environment

< Does not indicate the degree to which a trait is
genetic, it measures the proportion of the phenotypic
variance that is the result of genetic factors




QTL analysis

Is there an association between marker genotype
and quantitative trait phenotype?

Marker genotype  AA aa AA aa AA AA aa aa




QTL analysis
% QTL Detection and LOD threshold
< QTL Localization
QTL Detection

QTL effect: The average difference in the phenotype of the trait between
marker allele genotypes

Homozygous effects: The difference in the mean of the trait between
the two homozygous genotypes

Heterozygous effects: The difference between the mean of the trait in
the heterozygous genotypes from the average of the means of the trait in
the two homozygous genotypes.




LOD threshold

LOD (logarithm of the odds) score: The strength of the
presence of a QTL at a particular location across genome

LOD threshold= 95th percentile of the distribution
of genome-wide maxLOD, when there are no QTL
anywhere

LOD score= it
probability of having a QTL
in the data/probability that
there is no QTL in the data

For example; LOD of 2 means that it is 100x more likely
_that a QTL exists in the interval than there is no QTL




QTL analysis

Location of QTLs
To localize a QTL we need individuals in which recombination

has occurred in the vicinity of the OTL so that only
markers very close to the OTL remain linked to it

When size of the interval to localize the QTL decreases, the
number of individuals required to detect the recombinants In
the interval and number of molecular markers increases

According to Mackay (2009), we would only need 29
Individuals to detect at least one recombinant in a 10 cM
Interval, but 2,994 individuals to detect at least one
recombinant in a 0.1 cM interval




Overview: Linkage map and QTL mapping

(Segregating Populations>
—> Genotypi
Phenotyping

Scoring a large number of
Phenotyping Polymorphic markers in the
populations for trait

populations.

ll J

Steps to develop linkgae maps|*]




< Single marker analysis

methods

N/

< t-test (2 genotypic classes)
< ANOVA (more than 2 genotypic classes)

< Simple linear regression statistics
< Kruskal-Wallis test

< Interval mapping

< Multiple QTL Model




Single marker analysis

The basic principle is to divide the population in the genotypic
classes based on the marker (AA, AB and BB) and then determine
If there Is correlation between marker and the trait effect.

Plant 1 2 3 4 5 6 7 8 9 10

Genotype A H H H B B A H H A

Height 50 45 47 43 40 43 52 46 44 53
Weaknesses

< Cannot predict true QTL location and QTL effect
< Missing values at the marker are discarded

< The power for QTL detection decreases

AN




Interval mapping

(Eric Lander and David Botstein) _
The marker intervals are searched in a systematic, linear
(one-dimensional) fashion, in increments (for example, 2 cM),

and statistical tools are used to test whether a single QTL is
likely to be present within the interval or not.

P=0.05

QTL

LOD Score

P =0.90 P =0.50 P=0.01 P=0.70

iV athe Wi W

0 10 13 17 30




Interval mapping

Additive, Dominant, Recessive effects
of a single QTL (Gary Churchill)

rame Dorminan A potential QTL might act

‘ | | Independently, be linked to
another QTL, or interact
epistatically with other QTL

Works well when to map
ocsosve single QTL

Power and resolution is
. decreased when more than
one QTL effect the trait




Multiple QTL Model (MQM)

More powerful than single QTL approaches because it can
differentiate between linked and/or interacting (epistatic) QTL.

Procedure:

After an initial scan of QTLs by interval mapping, one
performs MQM using the QTL detected in the interval
mapping scan as cofactors. This can be repeated one or
more times until the list of detected QTLs does not change.

Cofactors control for the variation caused by the genetic
background (i.e. variation caused by QTLs outside the
region where the QTL is tested).




Multiple QTL Model (MQM)

Selection of Cofactors

Forward selection: At each stage best new cofactor
satisfying the selection criterion is added until no
further candidate remains

Backward elimination: Starts with a multiple regression
model, using a full set of cofactors (all putative
QTL/markers) evenly spread over the genome. The
unimportant or least important are dropped one by one
until all remaining cofactors essentially meet the
selection criterion

Stepwise selection: Backward elimination followed
by stepwise procedure, including new cofactors and
dropping old ones




Uses of QTL mapping

< Fine mapping and identification of genes
underlying QTL regions

* Inheritance basis of the traits

<» Marker assisted selection (MAS)

< Map based cloning




Summary: Linkage & QTL mapping

<> Crossing over and recombination
provide basis for genetic (linkage)

mapping

<> Relationship between
recombination and genetic
distance

<> Genetics of guantitative traits

<> Genetic locus controlling quantitative trait (QTL) can be
identified by genotyping molecular markers and phenotyping
the trait of interest in segregating population

<-Importance of QTL mapping in crop improvement



Exciting time for targeted and precise sweetpotato
selection and breeding

Figure 1: The potato genome.
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New paradigm of Genomics-assisted
breeding

Diverse
germplasm

panel
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Marker-assisted breeding
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Thank for your attention




Artemisia annua anti-malarial herb
transformed to successful crop

Sources of genetlc varlatlon in A. annua

Induced genetlc Natural genetic e —yrwmuere

varlatlon varlatlon B A

. "% aer i
(R Natural
populations B

EMS treated

population



Molecular marker development: Illumina
GoldenGate SNP array

Genomic libraries and DNA sequencing
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Scaled TIC

Trait evaluation and metabolite profiling

Field experiments conducted in UK, Switzerland and
Madagascar
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Use of MAS in hybrid production

L M %inc in artemisinin
60 - M %inc in leaf area

o0~
40 -
30 -
20+

10+

% Increase Above Artemis

The increase (%) in artemisinin concentration (in blue) and leaf area (in

red), over Artemis F1 for seven hybrids produced from crosses of
selected high-yielding individuals.




Overview: Association mapping analysis

Germplasm ) Genotyping lllllllllllllllllllllllllllllllllll E
- == v
Genome-wide £ Background Candidate
scan markers genes
4 :
k 7 Q v
Genome-wide _———> Population structure Candidate
polymorphisms (G) (Q), relative kinship (K) polymorphisms (G)
~ iy - - i .
)
v ) - - -
_ Association analysis < :
Phenotyping (Y) —> (Y =G + Q/K +E)

Zhu et al. 2008




The Maize Nested Association Mapping
Population (NAM)
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Predicting the phenotype: Genomic
selec| --

GEBV: GEnomic Estimated Breeding Value

EBV: Experimentally Estimated Breeding Value

Material Selections

V

i — Mak
I]|:| Breeding > Genotming alculate ake

Training Set

500 lines with
genotypes and Prediction
phenotypes Model

' ’/?redict phenotypes

based on genotypes
alone,

Training Population

Validation Set




