Marker-assisted selection/breeding and its potential use for sweetpotato improvement

Awais Khan

awais.khan@cgiar.org

International Potato Center (CIP), Lima, Peru

Plant breeding

Systematic procedure for genetic improvement through <u>crossing</u> plants with desired traits and <u>selecting</u> progeny with improved performance and/or improved combinations of traits.

Accelerated and targeted evolution

Crop Improvement: Critical considerations

Data recording and management

Phenotyping with special attention to Genotype x environment interaction: appearance and performance in general, in particular, response to environment

Genomics for identification of genetic basis of traits of importance

Selection of parents and progeny with desirable traits

Challenges of plant breeding

A challenge for modern breeding – to develop and integrate phenotypic and genotypic information to understand and improve traits of interest

Phenotypic selection: Selection based on appearance and performance

I. Difficult to separate environmental & genetic contribution

- II. Difficult to distinguish homozygous & heterozygous effects
- III. Needs large space & labor input
- IV. Slow & time consuming

Concept of Marker assisted selection

Molecular breeding

Association between molecular marker and causative gene

Marker-trait association identification

Varshney et al. 2014

Predicting the phenotype or selection of progeny with desirable traits

Marker-assisted Selection (MAS): Usually, plants are selected for up to 10 alleles

Genomic Selection (**GS**): Selection of several loci genomewide linked to traits of interest using Genomic Estimated Breeding Values (GEBVs) based on genome-wide markers

Nakaya and Isobe, 2012

Overview: Linkage map and QTL mapping

Genetic (linkage) mapping

Determining the location of elements (genes) within a genome, with respect to identifiable landmarks (molecular markers)

Three key concepts to understand genetic mapping

Linkage, crossing over and recombination

Mendel's Law of Independent Assortment applies well to genes that are on different chromosomes.

But!

loci of two genes are close enough together on the same chromosome = "linked" and they tend to segregate together in crosses.

Copyright © The HeGraw-Hill Companies, Inc.

Crossing over recombination and map distance

Two types of gametes are possible

Parental gametes= If crossing over does not occur Recombinant gametes= If crossing over occurs

The probability that crossing over will lead to the separation of two genes on a chromosome is proportional to the distance between them

Construction of a genetic map

Frequency of recombinants in the progeny helps to estimate the distance between markers.

A genetic map

Is an ordered list of the genetic loci along a particular chromosome Unit: Morgan/centiMorgan also known as the genetic map distance: *d*

Requirements

Segregating population: A population with known relationships, segregating for the traits of interest

Genetic markers: A variation which may arise due to mutation or alteration in the genomic loci that can be used to identify individuals

Segregating population

Molecular markers

DNA Based markers

Randomly Amplified Polymorphic DNA (RAPDs)
Amplified Fragment Length Polymorphism (AFLPs)
Microsatellites/Simple Sequence Repeats (SSRs)
Single Nucleotide Polymorphism (SNPs)
Morphological markers
Isozymes

Properties of good marker

Simple Sequence Repeats (SSRs)

Genotyping

A large number of genetic markers are tested on a segregating population (genotyping)

Data file with marker score for each individual of the population

Software is used to estimate recombination frequency of each marker and order the markers along a linkage group (chromosome)

Marker data

Key: A=Homozygous for allele P1 B=Homozygous for allele P2 H=Heterozygous M=Ladder

Multiple samples per sequencing run

Let's construct a genetic map

Recombination frequency (RF) =

number of recombinants/total number of individuals*100

RF of 1 %= Genetic map distance of 1 cM

Gametes	# of gametes			
ABC	1080			
abc	1071			
AbC	293	<u>A - B</u>	B - C	A – C
aBc	282	293	293	78
aBC	78	282	282	66
Abc	66	78	6	6
ABc	6	66	4	4
abC	4	719	585	154
Total	2880	0.250	0.203	0.053
A C		E	3	
5.3	20.3		distance i	n map unit

Mapping functions

Interference: Does a crossover in one region affect the likelihood of a crossover in an adjacent region

- Haldane: There is no interference due to crossing over and crossing over occurs randomly and independently.
- Kosambi: Constant and specific level of interference and a small correction for interference.

Linkage map

Dense genetic map for B x T sweetpotato based on DArTseq markers

First report: 33086 SNPs were identified

11091 SNPs were mapped

LG02

0.0	1/550198 /55/432
2.6	7539952
7	17525949 7527108
8	17573108 7573109
i.2	17549551 7617389
.9	7526952 7562068
1.3	47571005 7530308 7629656
.4	17529817 7561908
3	7563840
1.6	111820919 7542843 7554884 7571468
0.0	7600834
1,4	7538303
1,1	7526337
1.9	17527179 7571967
2.6	17542271 7567489 7616911 7545148 7559788
14	7542219
1.7	17551701 9840531
ι1	17531008 7556568
1.6	7565138
3	7532585
1.2	7602120
1.6	414314463 /532839 /559369 /601401
1.8	7600713
1.5	47542969 9842349 7533216 7533406 7540901
1.9	9647619
2.3	1009189
1.9	7533487
6	1 7533726
.3	7563956
1.2	17547657 7556747
8.6	7559638
1.9	y ⇔ y 7543366
1.0	H 14313564 7531810 7548702 7630896
1.7	1 1/552805 /555/14 14314022
1,1	7603546
1.5	7621215
1.9	7535649
i.2	
0,4	17555691 7620070
1.9	
2.3	-V K17626245 9840612
2.6	
1	
2	
.6	1 01 143 14000 7009231 143 14103
2.4	1/3/06000 /3/0707 /3/0601 /020300
1	
1	
	7520920
	17550000 U7550001 7554440 7545097 7504749 0044950
1	17556651 7554145 7545527 7601712 5544360
5.0	17550224 7622555 7624257
	17533024 702030 7037237
2.0	17510703 7532089
	17571562 7572863 7571563 7631089
12	7575172
.0	7544619
1.4	17557187 7564668 7565759 7533858 7564669
2	7606725 7612802
6	7564525
0	7625898
7	47565614 7627569
6	17544253 11826091 7540810 7608855
i ă	7622893
7	7546776
8	7622890
13	114313534 7531770 7544364
14	14313506
	14313495 14313511 14313515 14314219 7537490
1.8	7541168 7550832 7570218 7574787 7625350
i.2	17567505 7567507
6	7531362
1.1	14313482 7535163 7566135
1.6	7536479
	7620470 9844151 7530807 7531581 7536338
	17544552 7565008 7602187
7	17525989 7561457
1.1	7602938
8.0	114314605 7543031 7550359 7570564 9836942
1.5	17620935 7537657
	7571144 7532979 7561441 7568908 7571145
	17605203 9843659

0.0 j d7553801 7559446
0.4 17530738 7533557 7605008
1.1 4/52829/ /5/3665 1.5 07550721 7525881
2.6
4.4 114313145 7540493 7601215
4.8 H7561079 7568595 14313225
5.9 7569349
8.2 7603835
11.1 1 7539211 7539595 7555057 7572272 7631159
12.2 7541219
13.3 7565474
13.7 H14313292 7550022
16.3 1 17624333 7335394 7540635 7624334 16.7 17542323 14313194 14313342 7557935
17.0 - 111816060 14313343 7604946
17.8 111818513
20.0 7573096
20.8 - 17546869 7554494
21.1 1 47551358 7550016 7553876 7569307 7630128
21.5 1 47529486 7556083 7556521
23.0 +
25.2 1 47558741 7544526 7555370
25.6 1 - 7603343
28.2
28.9 v 9842595
29.3 4 47531591 7605685
30.8 7617373
32.3 7617393
34.1 -0 447555455 7558916
36.3 1 4 14314560 7549651 7549652 7632056
37.1 · H7631451 7631452
38.6 4 47545948 7550319
40.8 4 - 9838132
42.6 11815958
43.8 4 47550555 7532123 7543785 7553487 7600506
44.5 7 7565832
46.3 47549340 7530799 7549341
46.7
47.1 7 17347010 49.0 114313102 7563677 7602631 7622501
50.1 H7546115 7599504 7628328
50.4 · 7556676
50.8 1043 13465 7525260 7625020 61.9 7573295
52.7 - 47542820 9835924 7542821
53.0 - 17550247 7557236 7616908
53.4 1 17597237 3941741 7397235 53.8 - 17532013 7632154
7568671 7573867 7574147 7574148 7628768
54.5 7631729 14313759 7532725 7539614 7548508
46.0 - 7553479
4. 17566778 7566780 7569163 7630166 7630726
17526619 7543150 7630725
63.8 7560844
66.4 47539475 9841135 7535564 7600230
67.5
68.3 1 7019566 77 1 47630659 7572434
83.7 47542038 7600798

LG03

			0.0		aa23413
0.0 1		E-AGG_M-CAA_384	0.1		A23413_171
3.0		E-ACC_M-CAC_228	5.4		A3946 999
3.2		E-ACI_M-CAC_228	10.6		A13289_184
13.8		E-AAC M-CCT 453	10.8		A13289_178
21.2		E-ACT_M-CAC_333	13.9		B21852 1525
22.7		E-ACC_M-CAG_123	10.5		B21852_1257
22.9		A12796_287	19.5		U24480_441
29.5		aa20622	22.9 [.]		U24480_548 B11117_260
29.8		EST_219	23.2		U6734_124
37.8		A2794_231	23.4		B28302_97
00.0		E-ACC_M-CAA_075	25.2		017904_1731
38.9		A25506_480	28.4		B28302_2382
20.0.		E-ACC_M-CAG_205	29.6 -		E-AGG_M-CAA_188
39.0		E-AAC M-CTG 213	31.1		A37074_189
		A20672_400	32.1		IEST 83
39.1 1		E-ACA_M-CAA_172	33.7 1		E-AAC_M-CCT_304
		E-ACA_IM-CGT_135	33.9		U25119_164
39.3 1		E-AAC_M-CCT_274	34.3		A9935_256
39.4		E-ACC_M-CAC_078	34.6		B3166_134
39.51		E-ACA_M-CTG_291	34.8	\simeq	E-AGG_M-CAA_204
39.6 1		A33808_73	35.61		F-ACA M-CGG 197
		A43_308	37.2		E-AGG_M-CCA_367
39.7		aa11122	37.3		A2087_540
39.9		Max3	37.5		E-ACC_M-CAG_063
40.1		EST_225	39.2		E-AAC M-CCT 395
1		A30540_380		=	E-ACA_M-CGG_247
40.4	H	A18263 133	20.2		A1531_166
	V	A7236_200	33.5		A5143_243
40 E -	X	E-ACA_M-CGI_133		Æ	A3799_309
40.5	Π	E-ACA_M-CAA_277	39.4 -	A)	E-AGG_M-CCA_215
40.6		E-ACA_M-CAA_262		H.	A15645_221
.0.0		IE-ACA_M-CGI_078			A12659_194
40.8		U37658 160			A29094_245
		E-AAC_M-CGT_146			A18286 474
41.1 ^J		E-ACA_M-CAA_111	39.7	H	E-ACC_M-CAC_243
		IE-ACC M-CAC 081	00.1		E-ACC_M-CAC_206
		U3704_1032			EST 540
41.4		U3704_1469			E-AGG_M-CAA_280
		U3704_1466			E-AAC_M-CGT_191
		B31408_348			E-AAC_M-CCA_139
41.7		E-AGG_M-CTG_191	30.8		E-AAC_M-CCT_064
		A35106 246	00.0		aa12659
41.8		A3050_432	39.9		B37157 452
42.0 ^J		B19699_339	40.1		A43528_885
		E-AAC M-CGT 094	40.7		A41905_648
42.1		A6628_314	40.81		A21119_356 A8549_422
		B41829_103	41.4		EST_321
42.2		A1808_252	41.6		A9746_143
42.2		A7876_659			A41905_459
42.3		U38236_833	41.9		U15727_915
46.9		E-ACA_M-CAA_120			U15727_1121
49.5		B42100 357	42.1		E-AGG_M-CAA_245
52.1		A38913_392	42.5		B31654 171
53.2		E-ACT_M-CAC_225	44.3		E-ACA_M-CGG_368
69.4		EST_543	45.0		A15081_780
80.0		E-ACA_M-CAC_212	49.7 · 55.7 ·		U28660 325
80.2 ^J		A37208_229	64.3		E-AAC_M-CCT_317
			67.8		E-AAC_M-CGT_083
			82.5 · 91 1 ·		E-AGG M-CTG 235
			91.6		A12306_424
			93.4		A44090_525
			94.3		A3554_856 A10569_190
			103.0		aa6285

Quantitative trait locus (QTL) mapping

Quantitative trait locus (QTL): A <u>genomic region</u> that is <u>associated</u> with a <u>quantitative trait</u>

Phenotypic trait

♦Qualitative trait♦Quantitative trait

Qualitative trait

Fall into discrete classes, controlled by two or many alleles of single gene and less influenced by environment e.g., blood type, seed coat color, many diseases

The wrinkled-seed character of pea is caused by a transposonlike insertion in a gene

Quantitative trait

The quantitative trait has continuous variation (bell-shaped curve, normal distribution) and is usually controlled by many genes of small effect, or by a few genes of large effect e.g., Height, Weight, Biomass, Disease resistance

But

A single polymorphic locus with multiple, differentially expressed alleles can also result in continuous variation

Variance Components $V_P = V_G + V_E + V_{GE}$ _P = phenotypic, _G = genetic, _E = environmental

 V_{GE} = variation associated with the genetic and environmental interactions

 V_G (The total genetic variation) $V_G = V_A + V_D + V_I$

A=additive, D=dominance, I= interaction due to epistatis

Additive genetic variance (V_A) : Each allele has a specific value that it contributes to the final phenotype

Dominance genetic variance (V_D): Dominant gene action masks the contribution of the recessive alleles at the locus

Example

Additive effect F1= 15 U (4+2+6+3)

Dominant effect F1=20 U (4+4+6+6)

Variance Components

Interaction genetic variance (V_I)/epistasis:

Due to masking of genotypic effects at one locus by genotypes of another locus

Environmental variance (V_E)

Due to difference in magnitude of performance of genotypes in different environments

Genotype-Environment interaction (V_{GE}) Due to difference in the direction of performance of genotypes in different environmental circumstances

The total phenotypic variance can be rewritten as $V_P = V_A + V_D + V_I + V_E + V_{GE}$

Heritability

The proportion of the genetic variance to the total variance

Broad-sense heritability: Ratio of total genetic variance to total phenotypic variance H2 = VG/VP

Narrow-sense heritability: Ratio of additive genetic variance to total phenotypic variance h2 = VA/VP

- Specific to the population and environment
- Does not indicate the degree to which a trait is genetic, it measures the proportion of the phenotypic variance that is the result of genetic factors

QTL analysis

Is there an association between marker genotype and quantitative trait phenotype?

QTL analysis

- QTL Detection and LOD threshold
- QTL Localization

QTL Detection

QTL effect: The average difference in the phenotype of the trait between marker allele genotypes

Homozygous effects: The difference in the mean of the trait between the two homozygous genotypes

Heterozygous effects: The difference between the mean of the trait in the heterozygous genotypes from the average of the means of the trait in the two homozygous genotypes.

LOD threshold

LOD (logarithm of the odds) score: The strength of the presence of a QTL at a particular location across genome

LOD threshold = <u>95th percentile of the distribution</u> of genome-wide maxLOD, when there are no QTL

anywhere

LOD score= probability of having a QTL in the data/probability that there is no QTL in the data

For example; LOD of 2 means that it is 100x more likely that a QTL exists in the interval than there is no QTL

QTL analysis

Location of QTLs

To localize a QTL we need individuals in which <u>recombination</u> <u>has occurred in the vicinity of the QTL so that only</u> <u>markers very close to the QTL remain linked to it</u>

When <u>size of the interval to localize the QTL decreases</u>, the <u>number of individuals</u> required to detect the recombinants in the interval and <u>number of molecular markers</u> increases

According to Mackay (2009), we would only need 29 individuals to detect at least one recombinant in a 10 cM interval, but 2,994 individuals to detect at least one recombinant in a 0.1 cM interval

Overview: Linkage map and QTL mapping

QTL analysis methods

Single marker analysis

- t-test (2 genotypic classes)
- ANOVA (more than 2 genotypic classes)
- Simple linear regression statistics
- Kruskal-Wallis test

Interval mapping

Multiple QTL Model

Single marker analysis

The basic principle is to divide the population in the genotypic classes based on the marker (AA, AB and BB) and then determine if there is correlation between marker and the trait effect.

Plant	1	2	3	4	5	6	7	8	9	10
Genotype	А	Н	Н	Н	В	В	А	Н	Н	Α
Height	50	45	47	43	40	43	52	46	44	53

Weaknesses Cannot predict true QTL location and QTL effect Missing values at the marker are discarded The power for QTL detection decreases

Interval mapping

(Eric Lander and David Botstein)

Most popular method

The <u>marker intervals</u> are searched <u>in a systematic</u>, linear (one-dimensional) fashion, <u>in increments</u> (for example, 2 cM), and statistical tools are used to test whether <u>a single QTL</u> is likely to be present within the interval or not.

Interval mapping

Additive, Dominant, Recessive effects of a single QTL (Gary Churchill)

A potential QTL might act independently, be linked to another QTL, or interact epistatically with other QTL

Works well when to map single QTL

Power and resolution is decreased when more than one QTL effect the trait

Multiple QTL Model (MQM)

More powerful than single QTL approaches because it can differentiate between linked and/or interacting (epistatic) QTL.

Procedure:

After an initial scan of QTLs by interval mapping, one performs MQM using the QTL detected in the interval mapping scan as cofactors. This can be repeated one or more times until the list of detected QTLs does not change.

Cofactors control for the variation caused by the genetic background (i.e. variation caused by QTLs outside the region where the QTL is tested).

Multiple QTL Model (MQM)

Selection of Cofactors

Forward selection: At each stage best <u>new cofactor</u> <u>satisfying the selection criterion is added</u> until no further candidate remains

Backward elimination: Starts with a multiple regression model, <u>using a full set of cofactors</u> (all putative QTL/markers) evenly spread over the genome. <u>The unimportant or least important are dropped one by one</u> until all remaining cofactors essentially meet the selection criterion

Stepwise selection: Backward elimination followed by stepwise procedure, including <u>new cofactors and</u> <u>dropping old ones</u>

Uses of QTL mapping

- Fine mapping and identification of genes underlying QTL regions
- Inheritance basis of the traits
- Marker assisted selection (MAS)
- Map based cloning

Summary: Linkage & QTL mapping

- Crossing over and recombination provide basis for genetic (linkage) mapping
- Relationship between recombination and genetic distance

♦ Genetics of quantitative traits

Genetic locus controlling quantitative trait (QTL) can be identified by genotyping molecular markers and phenotyping the trait of interest in segregating population

Importance of QTL mapping in crop improvement

Exciting time for targeted and precise sweetpotato selection and breeding

- ✓ Genome sequence
- ✓ Genome browser
- Next generation molecular markers
- ✓ Dense genetic maps
- ✓ Phenotypic data
- Database and analytical tools

Sharing

New paradigm of Genomics-assisted breeding

Varshney et al. 2014

Marker-assisted breeding

http://www.know.com/papk.irri.org/ricebreedingcourse/Marker_assisted_breeding.htm

Thank for your attention

Artemisia annua anti-malarial herb transformed to successful crop

Development of high yield artemisinin (anti-malarial) Artemisia annua (Asteraceae) with fast track breeding tools

Sources of genetic variation in A. annua

Molecular marker development: Illumina GoldenGate SNP array

Genomic libraries and DNA sequencing

- SNPs from candidate genes were prioritized for designing Illumina GoldenGate SNP array genotyping assay (1536 SNPs)
- SSRs based backbone of genetic map: Genotyped on ABI 3730 XL

Trait evaluation and metabolite profiling Field experiments conducted in UK, Switzerland and

15 physiological traits (Number of branches/plant, number of trichomes/leaf, plant height, biomass)

12 metabolites from the artemisinin pathway were studied using HPLC from fresh and dried leaves

QTLs

A selection of QTLs for key traits. QTLs are shown to the right and distances in centimorgans to the left of each linkage group.

Use of MAS in hybrid production

The increase (%) in artemisinin concentration (in blue) and leaf area (in red), over Artemis F1 for seven hybrids produced from crosses of selected high-yielding individuals. Graham et al. science, 2010

Overview: Association mapping analysis

Zhu et al. 2008

The Maize Nested Association Mapping Population (NAM)

	Founders	B97	CML103	CML228	CML247	CML277	CML322	CML333	CML52	CML69	Hp301	II14H	Ki11	Ki3	Ky21	M162W	M37W	Mo18W	MS71	NC350	NC358	Oh43	Oh7B	P39	Tx303	Tzi8
					×							B73														
	F ₁ s								I					İ												
SSD=Single seed descent	SSD	↓ @ ↓ @	>											↓ « ↓ «	> >						•					
	(1	Ì									!!			İ												İ
	NAM 2 .	-	H				l		li		!!		::													I
	200																									I
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Predicting the phenotype: Genomic

