

Progress in Virus Resistance Breeding in Uganda

R. Mwanga, C. Wasonga, G. Ssemakula, B. Yada, J. Kreuze, S. Fuentes, J. Low, W. Gruneberg, C. Yencho

15th SPHI Annual Sweetpotato SpeedBreeders Annual Meeting, BecA/ILRI, Nairobi, Kenya June 8-10, 2016

SWEETPOTATO ACTION FOR SECURITY AND HEALTH IN AFRICA

Outline of presentation

- Background, Yield losses due to swetpotato virus disease (SPVD)
- Old breeding cycle
- Progress to date

Sweetpotato Virus Disease (SPVD) Causes Significant Yield Losses (50->90%)

Christopher A.

Jeffrey A. Davis

Jorge A. Abad

Wilmer J. Cuellar

Segundo Fuentes

Richard William Gibson

Settumba B. Mukasa

Arthur K. Tugume

Fred Donati Tairo Jari P. T. Valkonen

Clark et al. 2012: Plant Disease

Local, Introduced & Improved Gemplasm & Breeding lines Spotato Breeding Scheme Uganda

Crossing Block (Polycross)

Intermediate
Yield Trial (Yr 4)
50 Clones (Replicated)

Seedling Nursery (Yr 1) 100,000 Seedlings

Advanced / MultiLocation Trials (Yrs 5,6)
25 Clones Replicated

Clonal Evaluation (Yr 2) 2,000 Clones (No Reps)

On-farm Trials (Yr 7) 7 5 Clones (Replicated

Preliminary Yield Trial (Yr 3) 100 Clones (Replicated)

Variety Release (Yr 8)

Table 1. Sweetpotato varieties released in Uganda 1995 to date (Mwanga et al. 2016, HortScience, 51)

Year released	Cultivar/comment	No of cultivars			
1995	Bwanjule, New Kawogo, Tanzania, Wagabolige, Sowola, Tororo 3	6			
1999	NASPOT 1 to NASPOT 6	6			
2004	Ejumula, Kakamega /orange-fleshed	2			
2007	NASPOT 7, NASPOT 8, NASPOT 9 O (Vita), NASPOT 10 O (Kabode), Dimbuka-Bukulula	5			
2010	NASPOT 11 / participatory breeding	1			
2013	NASPOT 12 O, NASPOT 13 O	2			
Total		22			

Security and Health in Africa

C Female parent Origin of parent Status/

Year released/
status/

Desirable / undesirable trait

Table 2. Origin/ main attributes of 24 sweetpotato parents used in the 2001/2002

germplasm (GM)

GM

1999

GM

GM

2004

1999

1995

SPVD

AB

Orange-fleshed (OF), high dry matter (HDM)

Resistant to sweetpotao virus disease (SPVD)

OF, moderate resistance to AB, susceptible to

OF, HDM, resistant to SPVD, susceptible to

HDM, resistant to SPVD, susceptible to AB

HDM, susceptible to Alternaria blight (AB)

OF, HDM, highly susceptible to SPVD

Uganda (landrace)

Uganda (landrace)

Uganda (landrace)

Uganda (landrace)

Uganda (bred

clone)

Uganda (bred

clone)

CIP / Peru

de

1 Kala

2 NASPOT 4

Kanyasi

Ejumula

NASPOT 5

New Kawogo

Zapallo (420027)

Table 2. Origin and main attributes of 24 sweetpotato parents used in the 2001/2002 polycross nursery at Namulonge, Uganda (complete)

Co	Female parent	Origin of parent	Year released/ status/	Desirable / undesirable trait
de			germplasm (GM)	
1	Kala	Uganda (landrace)	GM	Orange-fleshed (OF), high dry matter (HDM)
2	NASPOT4	Uganda (bred clone)	1999	Resistant to sweetpotao virus disease (SPVD)
3	Kanyasi	Uganda (landrace)	GM	HDM, susceptible to Alternaria blight (AB)
4	Zapallo (420027)	CIP / Peru	GM	OF, moderate resistance to AB, susceptible to SPVD
5	Ejumula	Uganda (landrace)	2004	OF, HDM, highly susceptible to SPVD
6	NASPOT5	Uganda (bred clone)	1999	OF, HDM, resistant to SPVD, susceptible to AB
7	New Kawogo	Uganda (landrace)	1995	HDM, resistant to SPVD, susceptible to AB
8	Bwaniule	Uganda (landrace)	1995	HDM, resistant to SPVD

1995

1995

1999

GM

GM

Breeding line

Breeding line

Breeding line

Breeding line

Breeding line

GM

GM.

GM

GM

2004

1999

HDM, early maturity, light canopy

OF, susceptible to SPVD

OF, susceptible to SPVD

HDM. resistant to SPVD

OF, susceptible to SPVD

OF, susceptible to SPVD

OF, susceptible to SPVD

OF, low root yield

OF, HDM, susceptible to SPVD

Adapted to short grassland area

HDM, resistance to sweetpotato weevil

OF, HDM, moderately resistant to SPVD

OF, HDM, high root vield, susceptible to AB

HDM. moderately resistant to SPVD

HDM, taste, moderately resistant to SPVD

OF, good root shape, susceptible to SPVD

Uganda (landrace)

Uganda (landrace)

CIP / Peru

CIP / Peru

Uganda (bred clone)

Uganda (landrace)

Uganda (landrace)

Uganda (landrace)

Uganda (landrace)

Uganda (bred clone)

9 Sowola

10 Tanzania

11 NASPOT3

13 Jewel (440132)

14 NIS/199/23/60

16 NIS/199/18/1

17 NIS/199/4/4

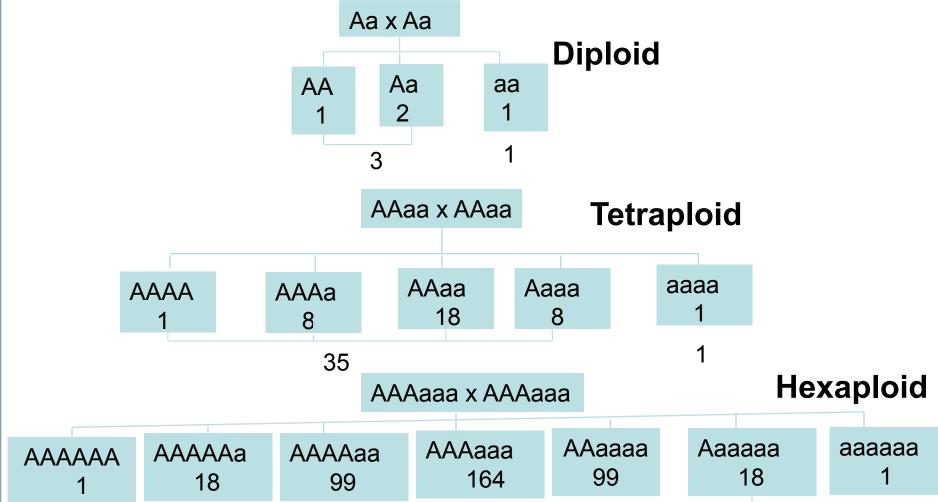
20 Ariyumaku-2

21 Bunduguza

24 NASPOT1

19 Nouiia

22 Araka


15 NIS/93/29

12 Beauregard (44013)

18 NIS/1990/Sowola-6

23 SPK004 (Kakamega) Kenya

Fig. 1. Segregation of dominant and recessive genotypes in di-, tetra-, and hexaploid

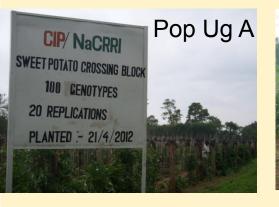
399

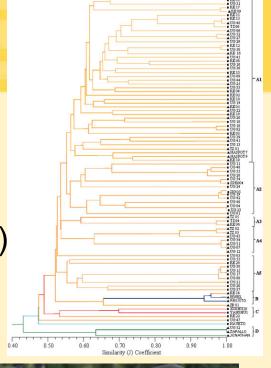
Table 3. AFLP and RAPD markers associated with ≥ 10% resistance to SP chlorotic stunt virus (SPCSV) and SP feathery mottle virus (SPFMV), and ≥ 5% of the variability in resistance to SPVD in the 'Tanzania' x 'Wagabolige' cross. S13.1130 is a RAPD marker, all others are AFLP markers.

	Linkage	No. of			
Marker	group	genotypes (n)	F	\mathbb{R}^2	P
SPCSV					
e41m33.a	22	85	195.09	0.70	0.0000
e40m34.c	22	86	107.87	0.56	0.0000
e38m36.u	35	87	19.24	0.19	0.0000
e36m49.a	35	86	13.63	0.14	0.0004
e38m36.n	35	80	11.41	0.13	0.0011
e35m49.d	47	86	11.83	0.12	0.0009
e39m36.a	47	87	9.23	0.10	0.0032
SPFMV					
S13.1130	6	84	205.83	0.72	0.0000
e39m32.f	6	80	41.02	0.35	0.0000
e36m59.a	6	85	9.21	0.10	0.0032
e32m36.f	33	87	8.90	0.10	0.0037
SPVD					
e32m48.d	4	86	4.43	0.05	0.0383
e35m49.c	4	86	4.43	0.05	0.0383
e32m48.a	24	86	4.22	0.05	0.0431
e38m36.b	24	87	4.10	0.05	0.0460
e35m49.a	32	84	4.04	0.05	0.0477

Table 4. Phenotypic ratios (resistant/ susceptible) in testcrosses for virus resistance genes (4 cytological hypotheses, assuming sp genomic constitution is R1R1R2R2R2R2 (R = dominant, r = recessive), (Jones, 1967, Kumagai et al.(1990) (Mwanga et al. 2002)

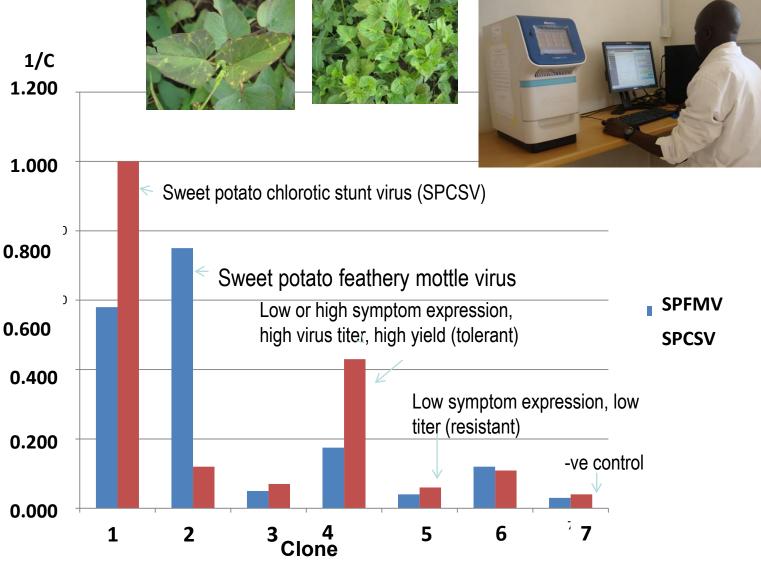
Gene Hypothesis 1		Hypotheses 2	_ Hypothesis 4			
		Hypothesis 2	Hypothesis 3			
Autohexaploid (hexasomic) non preferential pairing , R1 = R2		Tetradisomic Strict preferential for R1, R2; genes on R1 have disomic inheritance, genes on R2 tetrasomic	Tetrasomic Alleles for located on R2 genome	Allohexaploid (disomic) Allele for resistance located on R1		
Simple	ex Rrrrrr 1:1	Rrrr rr FM:TZxWA	1:1	Rr rr rr 1:1		
FM/0	CS: TZxWAG/ TXBKM	Rrrr Rr G/ TZxBKM	1:1			
Duplex	RRrrrr 4:1	RRrr rr	5:1 3:1 1:0	Rr Rr rr 3:1		
S	SPFMV:TZxBKM	Rrrr Rr Rrrr RR		RR rr rr 1:0		
Triplex	RRRrrr 19:1	RRRr rr	1:0	Rr Rr 7:1		
Ou odmini		RRrr Rr Rrrr RR	11:1 1:0	RR Rr 1:0		
Quadruple	ex RRRRr 1:0	RRRR rr	1:0	RR Rr 1:0		


Inheritance of SPFMV and SPCSV resistance


- Dominance effects for SPCSV and SPFMV resistance genes were ruled out
- •At least 50% of all progenies derived from the resistant parent would be resistant regardless of the model of inheritance (disomic, tetrasomic, tetradisomic, hexasomic)
- •Exact allelic frequencies or dosage effects could not be estimated in this study
- •Data suggest that the frequency of resistant SPFMV and SPCSV alleles is high, the resistant phenotypes are not as common due to the **polysomic** nature of sweetpotato and the **traits** being **recessive**

Developing populations for SPVD resistance and quality traits

- Two distinct genepools (Population Uganda A and Pop Ug B) were formed using molecular markers (18 SSR markers)
- Controlled crossing (inter- and intra-gene-pool) for population improvement and polycross crossing are in progress



Field screening for SPVD resistance: choice of parents/large No's of progeny for field screening SASHA

Discrimination of resistant and tolerant clones using real-time PCR (Ct = cycle threshold)

Virus accumulation in promising clonesha

Clone	Root yield	¹ SPVD	Mean scores (3 reps, May-Aug 2012)		Class	SPFMV	SPCSV
	(t/ha)	(3 seasons)	SPVD	Alternaria blight		² (1/△Ct)	(1/∆Ct)
4.3	5.1	3.3	1.3	2.0	Susceptible	0.556	1.011
17.3	6.1	2.0	1.0	1.7	Resistant	0.053	0.067
21.4	16.2	1.0	1.5	1.7	Tolerant	0.144	0.463
23.11	19.9	1.3	1.5	2.7	Tolerant	0.273	0.162
24.7	5.4	2.0	2.0	1.0	Resistant	0.053	0.053
29.3	7.0	3.3	2.5	1.7	Susceptible	0.052	0.349
NSP11	17.4	2.0	1.3	1.0	Resistant	0.113	0.064
Mean	10.7	2.1	1.6	1.7	-ve control	0.052	0.062
LSD _{0.05}	4.9	1.5	8.0	0.6			
CV (%)	27.3	29.8	35.1	39.6			

¹SPVD = sweetpotato virus disease; SPFMV = Sweet potato feathery mottle virus; SPCSV = Sweet potato chlorotic stunt virus. ²

SPVD genotypes which show clear virus symptoms within first two months after planting are considered susceptible (mean score >3.0 on a 1-5 scale, 1= no

symptoms, 5 = severe symptoms). NSP11 = NKA1081L = NASPOT 11

 $^{^{2}\}Delta$ Ct = Delta Ct = Ct gene test – Ct endogenous control.

Can we make virus resistance breeding easier?

Thank you for your attention