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Genetic control of dry matter, starch and sugar content in sweetpotato
Ernest Baafia, Vernon E. Gracenb, Joe Manu-Adueninga, Essie T. Blayb, Kwadwo Oforib and Edward E. Careyc

aCSIR-Crops Research Institute, Kumasi, Ghana; bWest Africa Centre for Crop Improvement (WACCI), University of Ghana, Legon, Ghana;
cInternational Potato Centre (CIP), Kumasi, Ghana

ABSTRACT
Sweetpotato (Ipomoea batatas L. (Lam)) is a nutritious food security crop for most tropical
households, but its utilisation is very low in Ghana compared to the other root and tuber
crops due to lack of end-user-preferred cultivars. Knowledge on the genetic control of
important traits such as dry matter, starch and sugar content of sweetpotato storage roots in
a breeding population is critical for making breeding progress in developing sweetpotato
varieties preferred by farmers and consumers. This study used diallel mating design to
elucidate general combining ability and specific combining ability, to determine the gene
action controlling storage root dry matter, starch and sugar content in sweetpotato and the
heterotic potential of the traits to facilitate the crop’s improvement for increased utilisation.
A general model for estimating genetic effects, GEAN II, was used to analyse the data.
Genetic variability was seen for dry matter, starch and sugar content of sweetpotato and
much of this genetic variation was additive in nature. The study also revealed significant
heterosis in sweetpotato which offers opportunity for breeding non-sweet, high dry matter
sweetpotato varieties that are preferred by farmers and consumers in Ghana.
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Introduction

Sweetpotato (Ipomoea batatas L. (Lam)) is in the bota-
nical family Convolvulaceae. It is the only crop plant of
major economic importance for food among the
approximately 50 genera and more than 1000 species
of the family (Thottappilly 2009), which may be due
to the Agrobacterium infection which occurred in evol-
utionary times of the crop (Kyndta et al. 2015). It is a
nutritious food, low in fat and protein, but rich in carbo-
hydrates (Betty 2010). The potential of sweetpotato in
food security and global well-being has been well
recognised (Van Hal 2000). It is a staple food for millions
of people and the seventh most abundant crop glob-
ally after wheat, rice, maize, potato, barley and
cassava (Bouvelle-Benjamin 2007). However, its utilis-
ation is very low in Ghana compared to the other
root and tuber crops such as cassava, yam and
cocoyam. Consumers in Ghana prefer non-sweet
sweetpotatoes with high dry matter content (Sam &
Dapaah 2009; Baafi et al. 2015). Conversely, locally
available clones have very sweet taste, which limit
their consumption as a staple food (Missah & Kissiedu
1994). Recently introduced orange-fleshed varieties,
which possess the vitamin A precursor to combat
vitamin A deficiency at relatively cheaper cost, have
low dry matter content that is not preferred. Lack of

varieties with end-user-preferred traits has been the
main reason for the low utilisation of sweetpotato in
Ghana. There is a need to develop farmer- and consu-
mer-preferred sweetpotato varieties to increase the
crop’s utilisation in Ghana.

Sweetpotato breeding until recently was exclusively
based on estimates of heritability of the traits con-
cerned (Jones et al. 1979; Jones & Dukes 1980; Jones
1986). Estimates of heritability indicate that superior
parents tend to pass on desirable additive genes to
their progeny (Rex 2002). The expected amount of
superiority is realised in subsequent generations only
if the genetic effects are additive (Miller et al. 1958).
In cross-pollinating crops such as the sweetpotato,
combinability, or the ability of a parent to pass on desir-
able genes to a hybrid progeny, is more important.
Knowledge on the gene action influencing high dry
matter, high starch and non-sweetness therefore
becomes critical in sweetpotato improvement or culti-
var development.

Mating designs that estimate general combining
ability (GCA) and specific combining ability (SCA) of
quantitative traits are important in breeding heterozy-
gous crops (Hayman 1954a; Griffing 1956; Fry 2004).
The North Carolina II (NCII) mating design has been
used to study inheritance in sweetpotato (Gasura
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et al. 2008; Sseruwu 2012; Oduro 2013; Todd 2013), but
the diallel mating design may provide more genetic
information on a complex crop such as the sweetpo-
tato. Diallels, in addition to estimating GCA and SCA
variance components from a set of randomly chosen
parental lines, can also be used to obtain estimates of
genetic effects for a fixed set of parental lines frommul-
tiple environment experiments (Zhang & Kang 1997).
Diallel cross is used for determining cumulative gene
effects of breeding populations (Hayman 1954a,
1954b; Griffing 1956; Hayman 1957, 1958), and also
provides information on heterosis. Heterosis provides
a basis for the formation of genetic pools (Gardner
1982). The mode of inheritance for some production
and utilisation constraints in sweetpotato has been
studied using diallels (Elisa et al. 2000; Mihovilovich
et al. 2000; Mwanga et al. 2002; Chiona 2009; Shum-
busha et al. 2014).

Griffing (1956), Method 4 has been used for inheri-
tance studies in sweetpotato (Elisa et al. 2000;
Mwanga et al. 2002; Courtney et al. 2008; Chiona
2009; Shumbusha et al. 2014) but, Gardner and Eber-
hart (1966) proposed an alternative analysis (GEAN II)
for diallel crosses from heterogeneous parents. GEAN
II is useful in evaluating n varieties and their n(n – 1)/2
F1 crosses. Variation among entries (genotypes) is
apportioned into entries (genotypes) and mid-parent
heterosis (Gardner & Eberhart 1966; Hallauer &
Miranda Fo 1988; Murray et al. 2003). Heterosis is
further subdivided into variety heterosis which indi-
cates GCA, average heterosis and specific heterosis
which indicates SCA (Murray et al. 2003). This analysis
assumes parents and crosses performance to be fixed
effects and environments random effects (Harold
et al. 2001). The approach fits parents and parent
cross means, Xij to the linear model Xij = µv +½(Vi +
Vj) + σhij, where µv =mean effects of parents, Vi and
Vj = estimates of variety effects for the ith and the jth
parents, respectively; and h = estimate of heterosis
effects when parent i is crossed to parent j (σ = 0
when i = j, and 1 when i≠ j). Heterosis effects only
existing in crosses are further partitioned as Hij = h +
hi + hj + sij, where h = estimate of average heterosis; hi
and hj = estimates of variety heterosis (expressed as
deviation from h) and indicates GCA; and Sij = estimate

of specific heterosis (SCA) from crossing parents i and
j. GEAN II has successfully been used for studying het-
erosis and estimating GCA and SCA in variety diallels of
maize (Crossa et al. 1987; Ali et al. 2001; Harold et al.
2001; Lee et al. 2003).

This study used diallel mating design to estimate
GCA and SCA effects, to elucidate the gene action con-
trolling storage root dry matter, starch and sugar
content in sweetpotato and heterotic potential of the
traits to facilitate the crop’s improvement for increased
utilisation.

Materials and methods

Experimental sites

A hybridisation block was established at the Crops
Research Institute (CRI) of the Council for Scientific
and Industrial Research (CSIR) at Fumesua in the
minor cropping season in 2012. The F1 progenies pro-
duced were evaluated at three locations spanning
over three major agroecological zones of Ghana in
the minor cropping season in 2013. These were the
CSIR-CRI research station at Fumesua (forest ecozone),
and the national agricultural research stations at
Wenchi (transition ecozone) and Pokuase (coastal
savanna ecozone). The mean annual rainfalls are
2200 mm (forest ecozone), 1300 mm (transition
ecozone) and 800 mm (coastal savanna ecozone)
(SRID [Statistics, Research and Information Directorate]
2001). The soils in the forest and transition ecozones
are generally loamy and are distinguished from those
of the savanna ecozones by the greater accumulation
of organic matter (MoFA [Ministry of Food and Agricul-
ture] 1998).

Genetic materials used

Crosses were made among four parent genotypes, two
with low sugar, high dry matter and high starch
content (Histarch and Ogyefo) and, two with high
sugar, low dry matter and low starch content (Apomu-
den and Beauregard) (Table 1). Histarch and Ogyefo are
white-fleshed varieties while Apomuden and Beaure-
gard are orange-fleshed varieties. Progeny families
and their respective number of seeds are shown in

Table 1. Genetic materials used and their characteristics.

Parents
Dry matter content

(%)
Starch content

(%)
Sugar content

(%)

Apomuden 27.0 47.04 28.97
Beauregard 32.0 63.27 22.90
Histarch 45.0 72.70 10.43
Ogyefo 42.0 71.37 11.67

Table 2. Progeny families and number of seeds used.
Parents Histarch Ogyefo Apomuden Beauregard

Histarch 30 30 22
Ogyefo 20 22 6
Apomuden 13 30 13
Beauregard 13 4 31
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Table 2. The seeds were germinated on moist filter
paper in a Petri dish after sand paper scarification. Ger-
minated seeds were then transplanted to prepared
nursery pots in the screen house for the establishment
of seedling nursery. Vine cuttings from each genotype
were hardened and multiplied in the field after eight
weeks in seedling nursery for the establishment of
the trials.

Experimental layout

The four parents were crossed using the full diallel
mating scheme. Sweetpotato is a highly heterozygous
crop making each cross between two different parent
plants genetically distinct such that variation in the F1
is equivalent to an F2 generation in a homogenous
crop. Twelve families consisting of 234 F1 progenies
(123 crosses and 111 reciprocals) were raised in the
seedling nursery but due to poor vigour of some gen-
otypes, 196 F1s (100 crosses and 96 reciprocals) were
evaluated, alongside their parents, using alpha lattice
design with two replications. All entries were planted
on ridges of single-row plots with five plants per geno-
type at a planting distance of 0.3 m within row and 1 m
between rows. Four node vines from the middle
portion to the tip were used for planting. Genotypes
within family were randomised to adjacent plots.

Data collection

Harvesting was done on whole plot at three and half
months after planting and one large, one medium
and one small, storage root were randomly selected
for determination of dry matter, starch and sugar
content. Storage roots selected were approximately
3 cm or more in diameter and without cracks, insect
damage or rotten parts (Ekanayake et al. 1990). The
storage roots were washed, peeled and cut into four
equal parts longitudinally. Two opposite quarters of
the peeled storage roots were sliced into pieces and
50 g fresh sample weighed into a polythene envelope.
The fresh samples were frozen using deep-freezer after
which it was freeze-dried for 72 hours using freeze-
dryer. The dry weights of the freeze-dried samples
were recorded. The freeze-dried samples were milled
and the milled samples used for the determination of
the starch and sugar content using the near-infrared
reflectance spectroscopy (NIRS). Dry matter content
was calculated as the ratio of the weight of dry
sample to that of the fresh sample expressed as a
percentage.

Data analysis

F1 progenies with missing data were eliminated from
the analysis. Data for 156 F1 progenies (80 crosses
and 76 reciprocals) out of the 196 and their 4 parents
were used for the analyses. Analysis of Variance was
first performed on data of all parents and their F1-
derived individuals using the approach of Buerstmayr
et al. (2007) to determine the mean performance of
parents and the F1 progenies using Genstat (Genstat
2007). The mean performance of the F1 progeny
families was used for estimation of GCA and SCA
employing the Gardner and Eberhart (1966) approach.
The analysis was done using SAS 9.2 computer soft-
ware (SAS 2002), based on the macros in DIALLEL-
SAS05 (Zhang et al. 2005). Contrary to the Griffing’s
Model, Gardner and Eberhart (1966) analysis II works
with condition if I > J, delete, so data for crosses and
reciprocals were not analysed simultaneously (full
diallel with parents) but separately (as Half diallel
with parents).

Results

Performance of parents and F1 progenies across
three environments

The mean squares for dry matter, starch and sugar
content across crosses and their reciprocals are
shown in Table 3. The environment effects were signifi-
cant (p < .05) for starch and sugar content and non-sig-
nificant (p > .05) for dry matter content across crosses
and reciprocals. The genotypes (entry) showed signifi-
cant (p < .01) differences across the crosses and their
reciprocals. The genotype by environment interaction
(G × E) effects for all the traits were not significant
(p > .05) across the crosses and only for dry matter
and starch content across reciprocals. Both the overall
heterosis and variety heterosis (GCA) were significant
(p < .01) for all the traits across the crosses and their
reciprocals. On the other hand average heterosis
effects were significant (p < .05) only for starch
content for the crosses, and starch and sugar content
(p < .01) across the reciprocals.

SCA was significant (p < .01) for only starch and
sugar content only for the reciprocals.

For dry matter content, Histarch and Ogyefo per-
formed well as parents (43% and 40%) but Histarch
did not differ significantly (p > .05) from the other
parents in cross performance except Beauregard
(Table 4). The poorest performing parent was Apomu-
den (26%). There were significant differences for the
overall cross performance for starch content. Histarch
and Ogyefo were the best performing parents (73%
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and 71%). For sugar content, Ogyefo and Histarch had
the lowest content among the parents (15% and 15%).
They were also essentially the lowest in the overall
crosses means (19% and 19%). Apomuden produced
the highest sugar content (37%) among the parents.
Significant differences were observed between some
crosses and their reciprocals. These were Beauregard ×
Histarch and Histarch × Beauregard (dry matter
content), Ogyefo × Beauregard and Beauregard ×
Ogyefo (starch content), and Beauregard × Histarch
and Histarch × Beauregard (sugar content).

Estimates of variety effects, average heterosis
and variety heterosis for dry matter, starch and
sugar content

Variety effect (vj) was significant for dry matter, starch
and sugar content (Table 5). Variety effect (vj) ranged
from −0.09% (Apomuden) to 0.09% (Histarch) for dry
matter content, from −17.75% (Apomuden) to 9.50%

(Histarch) for starch content and from −7.58%
(Ogyefo) to 14.77% (Apomuden) for sugar content. All
parents had significant (p < .01) variety effects for all
the traits except Beauregard which did not show signifi-
cant (p > .05) variety effect for starch and sugar content.
Variety heterosis (hj) which indicates GCA was significant
for all the traits (Table 5) with drymatter content ranging
from−0.03 (Ogyefo) to 0.03 (Apomuden), starch content
ranging from −4.79 (Beauregard) to 6.32 (Apomuden)
and sugar content ranging from −4.81 (Apomuden) to
4.69 (Beauregard). Average heterosis was significant for
all the traits except dry matter content (Table 5).

Better parent and mid-parent heterosis for dry
matter, starch and sugar content over three
environments

For dry matter content, better parent heterosis ranged
from−26% for the crosses between Beauregard and His-
tarch to −5% for crosses between Ogyefo and Histarch

Table 3. Mean squares for the four parents and their crosses across three environments.

Source of variation Df

Crosses Reciprocals

Dry matter content Starch content Sugar content Dry matter content Starch content Sugar content

Environment (Env.) 2 0.0005ns 37.50* 51.77** 0.0019ns 43.69** 29.21**
Rep. (Env.) 3 0.0002ns 2.19ns 8.20ns 0.0005ns 3.37ns 10.10**
Entry (genotypes) 9 0.0193** 408.02** 294.76** 0.0214** 426.35** 288.60**
Env. × Entry (genotype) 18 0.8000ns 5.81ns 8.61ns 0.0005ns 4.48ns 6.40**
Overall heterosis (hij) 5 0.0017* 107.11** 74.38** 0.0036** 158.11** 88.99**
Average heterosis (h) 1 0.0014ns 41.85* 5.48ns 0.0001ns 75.05** 37.64**
Variety heterosis (hj) 3 0.0032** 107.70** 132.78** 0.0049** 206.65** 113.12**
SCA 2 0.0014ns 17.40ns 13.453ns 0.0015ns 47.88** 34.01**

*p < .05.
**p < .01.
nsNot significant.

Table 4. Dry matter, starch and sugar content across parents and progeny families over three environments in Ghana during 2013
minor season.

Parents

F1 progeny family means

Apomuden Ogyefo Beauregard Histarch Overall Parental means

Dry matter content (%)
Apomuden 33 28 36 39 26
Ogyefo 33 33 41 36 40
Beauregard 28 31 32 32 31
Histarch 38 40 40 38 43
Lsd (5%) 6 6
Starch content (%)
Apomuden 66 57 66 64 45
Ogyefo 65 67 72 67 71
Beauregard 57 61 62 62 63
Histarch 69 71 70 68 73
Lsd (5%) 5 5
Sugar content (%)
Apomuden 19 29 21 23 37
Ogyefo 20 19 15 19 15
Beauregard 28 23 25 24 22
Histarch 18 16 17 19 15
Lsd (5%) 4 4
SF1 means for crosses above diagonal.
F1 means for reciprocals below diagonal.
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(Table 6). Mid-parent heterosis ranged from −14% for
crosses Beauregard × Histarch and Beauregard ×
Ogyefo to 9% for crosses Histarch × Apomuden. Specific
heterosis (sij) which indicates SCA was significant (p
< .05) for only crosses Ogyefo × Apomuden and His-
tarch × Beauregard. For starch content, better parent
heterosis ranged from −15% for crosses Beauregard ×
Ogyefo and Beauregard × Histarch to −1% for crosses
Ogyefo × Histarch while mid-parent heterosis ranged
from −10% for crosses Beauregard × Ogyefo to 17%
for crosses Histarch × Apomuden. Crosses Ogyefo ×
Apomuden, Beauregard × Apomuden, Apomuden × His-
tarch, Ogyefo × Beauregard, Histarch × Ogyefo and His-
tarch × Beauregard showed significant (p < .05) specific
heterosis (SCA) for starch content (Table 6). For sugar
content, better parent heterosis was computed based
on the low sugar content parent (Table 6) and ranged
from 3% for crosses Ogyefo × Histarch to 63% for
crosses Beauregard × Histarch. Mid-parent heterosis for
sugar content ranged from −29% for crosses Histarch ×
Apomuden to 35% for crosses Beauregard × Histarch.
Specific heterosis (SCA) was significant (p < .05) for
crosses Ogyefo × Apomuden, Beauregard × Apomuden,
Histarch × Ogyefo and Histarch × Beauregard (Table 6).
A list of F1 progenies that showed superior performance
are presented alongside their parents in Table 7. Their
sugar content ranged from 12.93% to 14.88% and
starch content from 71.37% to 75.57%, while their dry
matter content ranged from 40% to 46%.

Discussion

Significant mean squares for both variety heterosis
(GCA) and SCA for starch and sugar content (Table 3)

indicated that additive and non-additive effects were
involved in the expression of starch and sugar
content. However, the SCA accounted for a less of
the total sum of squares compared to the variety het-
erosis (GCA) for dry matter, starch and sugar content
suggesting that additive effects were more important
than non-additive effects for all the traits. This implies
that most of the genetic variation observed were addi-
tive in nature and majority of the total sum of squares
of the traits due to differences among generation per-
formance could be explained by variety effects (vj) and
variety heterosis (GCA). Variety effects depend on the
performance of parents (Harold et al. 2001), and it is
the difference between the mean of a parent and the
mean of all parents (Gardner 1967). Thus, variety
effects for the parents were important predictors of
the cross performance. This predominance of additive
effects in determining dry matter, starch and sugar
content suggest that there would be no complications
in breeding these traits since the traits can be
improved through selection. Oduro (2013)found addi-
tive effects more important than non-additive effects
for dry matter, starch and sugar content on different
sweetpotato genotypes. Similar results have been
reported for dry matter content (Shumbusha et al.
2014), and other traits in sweetpotato (Mwanga et al.
2002; Gasura et al. 2008; Sseruwu 2012).

The significant (p < 0.01) differences between the
genotypes (entries) (Table 3) demonstrate significant
genetic diversity and indicate that meaningful selec-
tion and improvement on dry matter, starch and
sugar content in sweetpotato is possible. In addition,
the divergence indicates that parents selected for the
study were very contrasting for dry matter, starch and

Table 5. Estimates of variety effects, average heterosis and variety heterosis for dry matter, starch and sugar content in three
environments in Ghana during 2013 minor season.

Parents

Traits

Dry matter content (%) Starch content (%) Sugar content (%)

Variety effects (vj) Variety heterosis (hj) Variety effects (vj) Variety heterosis (hj) Variety effects (vj) Variety heterosis (hj)

Crosses
Apomuden −0.09** 0.03** −17.75** 5.97** 14.77** −4.81**
Ogyefo 0.05** 0.01ns 8.18** 0.96ns −7.58** −1.47ns
Beauregard −0.04** −0.02** 0.08ns −4.79** −0.42ns 4.69**
Histarch 0.09** −0.01ns 9.50** −2.13** −6.77** 1.59ns

Std. error 0.01 0.01 1.04 0.90 1.03 0.89
Average Heterosis −0.01 ± 0.01ns 1.71 ± 0.77* −0.62 ± 0.76ns

Reciprocals
Apomuden −0.09** 0.02** −17.75** 6.32** 14.77** −4.44**
Ogyefo 0.05** −0.03** 8.18** −3.87** −7.58** 2.74**
Beauregard −0.04** −0.01ns 0.08ns −4.35** −0.42ns 3.47**
Histarch 0.09** 0.02** 9.50** 1.90** −6.77** −1.77*
Std. error 0.01 0.01 0.88 0.76 0.79 0.68
Average Heterosis 0.02 ± 0.01ns 2.28 ± 0.66** −1.62 ± 0.59**

*p < .05.
**p < .01.
nsNot significant.
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sugar content. Significant differences have been
reported for dry matter, starch and sugar content of
different sweetpotato genotypes (Gasura et al. 2008).
Studies conducted elsewhere have shown that sub-
stantial variation in flavour and sweetness exists in
sweetpotato (Mclaurin & Kays 1992; Morrison et al.
1993) while sugar content in sweetpotato is reported
to be cultivar-dependent (Ravindran et al. 1995; Aina
et al. 2009). G × E interaction is important in evaluating
genotype adaptation and development of genotypes
with improved end-product quality (Ames et al.
1999). The non-existent of G × E for dry matter and
starch content (Table 3) suggest that progress from
selection for these traits can be realised since genoty-
pic effects can be separated from environmental
effects. Significant G × E for sugar content (Table 3)
may complicate selection and breeding progress for
sugar content. Oduro (2013) reported significant G × E
for dry matter, starch and sugar content on 11 sweet-
potato genotypes studied. The differences in this
result and that of Oduro (2013) may be attributed to
differences in sweetpotato genotypes used and the
environments used for the evaluation. Significant
differences were observed between some crosses and

their reciprocals (Table 4). These were Beauregard ×
Histarch and Histarch × Beauregard (dry matter
content), Ogyefo × Beauregard and Beauregard ×
Ogyefo (starch content), and Beauregard × Histarch
and Histarch × Beauregard (sugar content). These
differences may be attributed to maternal effects.
Maternal effects are influences of parents on offspring
phenotype occurring through pathways other than
inherited DNA. If present, maternal effect could have
increased the GCA mean squares at the expense of
SCA. This has implications for the interpretation of
the results and perhaps for several others that over-
whelmingly concluded that additive gene action was
predominant over non-additive effects for dry matter,
starch and sugar content in sweetpotato. This agrees
with Oduro (2013), who reported that maternal
effects probably influenced the expression of dry
matter, starch and sugar content in sweetpotato.
Maternal effects have been reported to influence a
number of traits in sweetpotato (Lin et al. 2007;
Chiona 2009).

The high values of the variety heterosis (hj) (GCA) of
Apomuden for dry matter and starch content, and
Beauregard for sugar content (Table 5) indicate that

Table 6. Estimates of heterosis effects for dry matter, starch and sugar content over three environments.

Cross

Trait

Dry matter content (%) Starch content (%) Sugar content (%)

Better
parent (hij)

Mid-
parent
(ĥij)

Specific
heterosis (sij)

Better
parent (hij)

Mid-
parent
(ĥij)

Specific
heterosis (sij)

Better
parent (hij)

Mid-
parent
(ĥij)

Specific
heterosis (sij)

Apomuden ×
Ogyefo

−18 0 −0.012ns −7 14 −0.82ns 35 −24 0.69ns

$Ogyefo ×
Apomuden

−18 0 0.013* −8 12 2.24** 42 −20 −1.82**

Apomuden ×
Beauregard

−10 −3 0.009ns −10 4 −0.56ns 34 −0.7 0.56ns

$Beauregard ×
Apomuden

−10 −3 −0.007ns −10 5 −1.59** 30 −4 1.50**

Apomuden ×
Histarch

−16 3 0.003ns −9 12 1.38* 38 −19 −1.22ns

$Histarch ×
Apomuden

−12 9 −0.006ns −5 17 −0.65ns 22 −29 0.32ns

Ogyefo ×
Beauregard

−18 −8 0.003ns −7 −1 1.38* 35 8 −1.22ns

$Beauregard ×
Ogyefo

−23 −14 −0.006ns −15 −10 0.65ns 59 27 0.32ns

Ogyefo × Histarch −5 −3 0.009ns −1 −0 −0.56ns 3 0.2 0.53ns
$Histarch × Ogyefo −7 −5 −0.007ns −3 −2 −1.59** 9 6 1.50**
Beauregard ×
Histarch

−26 −14 −0.012ns −15 −9 −0.82ns 63 35 0.69ns

$Histarch ×
Beauregard

−7 8 0.013* −4 3 2.24** 10 −9 −1.82**

Std. error (direct
crosses)

0.01 0.69 0.68

Std. error (Reciprocal
crosses)

0.01 0.57 0.53

$Reciprocals.
*p < .05.
**p < .01.
nsNot significant.
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these varieties had high GCA for the respective traits.
High variety heterosis (hj) (GCA) indicates differences
in frequencies of dominant alleles between them and
the other parents (Crossa et al. 1987). The negative
values obtained for the variety heterosis (hij) (GCA)
(Table 5) may be attributed to unrealised performance
expectation of the parents in the F1 progenies. Nega-
tive values of variety heterosis for breeding varieties/
population seem to represent an unfulfilling perform-
ance expectations due to a high variety effects (vj)
and a high average heterosis effect (h) (Harold et al.
2001). Apomuden and Beauregard had the highest
sugar content as reflected by their positive values for
variety effects (vj) (Table 5). Ogyefo and Histarch had
the highest dry matter and starch content and this is
also reflected by their positive values for variety
effects (vj). This indicates that Ogyefo and Histarch con-
tributed positively to increase dry matter and starch
content, and decreased sugar content in the F1 proge-
nies. Apomuden and Beauregard on the other hand
contributed to increase sugar content in the F1 proge-
nies. Significance of the overall heterosis (Table 3) indi-
cates some opportunity for exploitation of heterosis for

breeding non-sweet, high dry matter sweetpotato var-
ieties that are preferred by farmers and consumers in
Ghana. Heterosis for dry matter, starch and sugar
content is present in sweetpotato progenies between
certain varieties (Grüneberg et al. 2009; Baafi et al.
2016). In this study, only reciprocal crosses Ogyefo ×
Apomuden and Histarch × Beauregard showed signifi-
cant specific heterosis for dry matter, starch and
sugar content (Table 6). It thus also suggests that het-
erosis for dry matter, starch and sugar content is
present in sweetpotato progenies between not just
certain varieties but more specifically for specific
crosses. This shows the advantage of full diallel
mating design over the others in sweetpotato breed-
ing. Crosses Ogyefo × Apomuden and Histarch × Beau-
regard produced progenies Ogyefo × Apomuden-16
and Histarch × Beauregard-14, respectively (Table 7).
Ogyefo × Apomuden-16 had dry matter, starch and
sugar content of 40%, 72.91% and 14.36% while its
parents Ogyefo and Apomuden had dry matter,
starch and sugar content of 39%, 71.37%, and
14.36%, and 26%, 45.44% and 36.71%, respectively
(Table 7). Histarch × Beauregard-14 had dry matter,
starch and sugar content of 46%, 74.48%, and 13.01%
compared to its parents Histarch (dry matter 43%,
starch 72.70%, and sugar content 15.17%) and Beaure-
gard (dry matter 31%, starch 63.27%, and 21.51%).
These progenies showed superior performance over
their parents for dry matter, starch and sugar content
except Ogyefo × Apomuden-16 which showed similar
performance in sugar content as Ogyefo. Sweetpotato
progenies with superior performance were reported by
Baafi et al. (2016). While those superior progenies were
obtained from non-contrasting parents (high dry
matter, high starch and low sugar parents), superior
progenies obtained in this study were from contrasting
parents. Histarch and Ogyefo are low sugar, high dry
matter, and high starch content genotypes while Apo-
muden and Beauregard are high sugar, low dry matter
and low starch content genotypes (Table 1). This indi-
cates that it is possible to breed non-sweet, high dry
matter sweetpotato varieties that have good utilisation
qualities from contrasting parental genotypes also
through exploitation of heterosis. This means that the
parents used in this study can be inter-crossed to
develop elite genotypes with sufficient genetic vari-
ation for breeding non-sweet, high dry matter sweet-
potato varieties that have very good cooking quality
for increased utilisation of the crop in Ghana.
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Table 7. List of F1 progenies that showed heterosis over three
environments.

F1 progeny
Dry matter
content (%)

Starch content
(%)

Sugar Content
(%)

Histarch ×
Apomuden-11

44 75.57 12.93

Ogyefo × Histarch-
14

46 74.48 13.01

Histarch ×
Beauregard-14

42 71.37 13.45

Histarch ×
Beauregard-10

40 72.81 13.66

Ogyefo × Histarch-
3

42 73.58 13.78

Histarch × Ogyefo-
34

43 72.77 13.83

Histarch × Ogyefo-
24

41 72.57 13.86

Histarch ×
Apomuden-1

40 73.96 14.10

Histarch × Ogyefo-
4

42 72.59 14.28

Ogyefo ×
Apomuden-16

40 72.91 14.36

Ogyefo 39 71.37 14.36
Ogyefo × Histarch-
9

45 72.24 14.39

Ogyefo × Histarch-
20

41 72.45 14.67

Histarch ×
Beauregard-2

41 71.43 14.73

Histarch × Ogyefo-
30

41 72.31 14.88

Histarch 43 72.70 15.17
Beauregard 31 63.27 21.51
Apomuden 26 45.44 36.71
*SEM (p < .05) 2.00 2.03 1.79
CV (%) 8.7 5.7 15.9

*SEM = Standard error of mean.
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