

Can RTB seed systems learn from each other?

Jorge Andrade, Graham Thiele et al.

Research Program on Roots, Tubers and Bananas

7th Annual SPHI Technical and Steering Committee Meeting ILRI Campus, Addis Ababa, Ethiopia 8 Oct 2016

Background

- Planting material (seed) RTB crops:
 - Accumulation of diseases leading to degeneration
 - Relatively low
 multiplication rates
 - Perishability, bulkiness
- Farmer-based seed systems 95+% of planting materials

DRC, Photo by Carl Walsh. Great Lakes Cassava Initiative

Background

- Challenges:
 - Improve quality & access
 - Improve dissemination of new varieties
 - Commercially sustainable
- Analysis gender blind
- Many interventions, little systematic learning
- Can RTB seed systems learn from each other?

Centro Internacional de Agricultura Tropical International Center for Tropical Agriculture Consultative Group on International Agricultura Research

1. Stakeholder framework – seed security

Stakeholder	ler Availability/ Accessibility				Quality,	Health, genetic
	supply	Delivery	Affordability/	Info to create	variety (incl.	purity,
		channel	profitability	awareness &	biodiversity)	physiological age &
		features	issues	demand		physical quality
Policy makers					Allowed the	
					project to	
					continue	
National research		Favored				
		eradication of				
		diseased plants,				
		re-planting				
International	IITA & CRS	Got suckers	Macro-		Susceptible,	The technology
research	project	from disease-	propagation		commercial	had problems
		free areas	was slow		varieties	
Traders (local	Not involved					
markets)						
Private seed	Not involved					
sector						
Farmer		Propagation	A technique			Farmers found
organizations		sited in	too tedious			other ways to get
		communities	for farmers			healthy seed
NGOs	CRS was a key	40				
	partner	organizations				
		involved				
Private sector				Keen market		
processors				demand for the		
				fruit		
Seed users			May have			
			been little			
			impacted			

Crop and country	Leading institution	Main focus	
1. Potato, Ecuador	CIP	A local farmers' organization produces quality declared potato seed for accessing high value markets	
2. Potato, Peru	CIP	Clean potato seed with funding from a mining company	
3. Yam, Nigeria	IITA	Researchers improve an on-farm technique for planting more land with less seed yam	
4. Sweetpotato, Tanzania	CIP	Delivering varieties, producing clean seed off-farm, managing vines on-farm, for nutrition and other outcomes	
5. Sweetpotato, Rwanda	CIP	Similar to case above, with additional pull from a sweetpotato buyer	
6. Potato, Kenya	CIP	Disseminate new varieties and clean seed with rationalized regulations permitting quality declared seed	
7.Cassava, Nicaragua	CIAT	New varieties for cassava awaken government and farmer interest after a lull of several years, in response to demand by agro-industry	
8. Potato, Malawi	CIP	Gender and seed. Men have better access to land and seed, but a new project fails both genders equally	
9. Cassava, W&C Africa	IITA	Disseminating new, disease-resistant varieties in seven countries	
10. Banana, East Africa	IITA	Helping to establish nurseries where communities can harden tissue cultured bananas to sell to farmers	
11. Banana, East Africa	Bioversity	A new multiplication technology and training to help farmers manage a new crop disease	

Lessons case studies (13):

Feasability of integrated seed health strategy

Thomas-Sharma et al., 2015

Lessons case studies (13)

- Theory of change: smallholders specialize in producing quality planting materials & become entrepreneurial suppliers
 - Few case studies explicitly estimated farmer demand for clean seed
- Seed systems projects need action-research:
 - formulation of explicit assumptions
 - plan for collecting information
- Seed purchase linked to ware market:
 - esp. if industry demands a new variety

2. Seed degeneration

Yam, nematodes

Sweetpotato, SPVD

Potato, Ralstonia

Cassava, CMD

Banana, Xanthomonas

Risk assessment framework for seed degeneration: integrated seed health strategy for vegetatively-propagated crops

Thomas-Sharma et al., 2016

A risk assessment framework for seed degeneration: Informing an integrated seed health strategy for vegetatively-propagated crops

Thomas-Sharma et al., 2016

Modelling seed degeneration at crop level, starting with potato Effect of environment, management practices and host genotype on virus incidence in 3 growing seasons in Ecuador

Kromann et al., in preparation

Buddenhagen et al., in preparation

Sweetpotato degeneration trial Tanzania

Kwame and Kreuze

Sweetpotato degeneration trial Tanzania

NT: net tunnel OP: open field

Kwame and Kreuze

Reviews on degeneration

Plant Pathology (2015) 64, 1-15

Doi: 10.1111/ppa.12273

REVIEW

Degeneration in sweetpotato due to viruses, virus-cleaned planting material and reversion: a review

R. W. Gibson^{a*} and J. F. Kreuze^b

*Natural Resources Institute, Chatham Maritime, Kent, ME4 4TB, UK; and ^b International Potato Center (CIP), Avenida La Molina 1895, Apartado 1558, Lima 12, Peru

Plant Pathology (2015)

Doi: 10.1111/ppa.12439

REVIEW

Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries

S. Thomas-Sharma^a*, A. Abdurahman^b, S. Ali^c, J. L. Andrade-Piedra^d, S. Bao^e, A. O. Charkowski^f, D. Crook^g, M. Kadian^c, P. Kromann^h, P. C. Struik^b, L. Torranceⁱ, K. A. Garrett^{aj} and G. A. Forbes^g *"breeding* for this attribute [reversion] will be the best strategy for achieving long-term control of most sweetpotato viruses."

"emphasizes the need to refocus management efforts in developing countries on improving the health status of seed tubers in the informal system by integrating disease resistance and on-farm management tools with strategic seed replacement." 3. Impact network analysis (INA)

Platform for evaluating system management strategies (seed systems or integrated pest and disease management)

- Impact <u>OF</u> research products
- Impact <u>ON</u> spatial ecological processes
- Impact <u>THROUGH</u> communication and decisionmaking networks, and linked biophysical networks

Impact network analysis

Garrett, in review

Knowledge management: Community of users

RTB Program Structure

Flagships and their Clusters of Activities

DISCOVERY	DELIVERY					
FP1: Enhanced genetic resources DI1.1 Breeding CoP DI1.2 Next generation breeding DI1.3 Game changing traits DI1.4 Genetic diversity	FP2: Productive varieties & quality seed CC2.1 Quality seeds & access to improved varieties BA2.2 User preferred banana cultivars/hybrids CA2 3 Added value cassava varieties	FP3: Resilient crops CC3.1 (Pest/disease management CC3.2 Crop production systems BA3.3 Banana fungal & bacterial wilts (Foc/BXW) BA3.4 Banana viral diseases (BBTV)	FP4: Nutritious food & added value CC4.1 Postharvest innovation CA4.2 Cassava processing CA4.3 Biofortified cassava SW4.4 Nutritious			
	PO2.4 Seed potato for Africa PO2.5 Potato varieties for Asia <u>SW2.6 User preferred</u> <u>sweetpotato varieties</u> YA2.7 Quality seed yam	CA3.5 Cassava biological constraints, Asia/Americas CA3.6 Cassava biological threats, Africa	<u>sweetpotato</u>			

CC5.1 Foresight, impact assessment and co-learning

CC5.2 Sustainable intensification and diversification for improved resilience, nutrition and income

CC5.3 Gender equitable development and youth employment

CC5.4 Scaling RTB agri-food system innovations

Cross Cutting Cluster: Knowledge management

- Identification of needs
- Validation
- Feedback

- Tools
- Approaches

Evidence-based recommendations to partners

Piggybacking on and adding value to new and existing projects

Project	Donor	Phase	Tools being used
Potato seed systems in Georgia	ADA	Design	ISHA, MSHF, INA, SDM
Potato seed systems in India	GIZ	Design	ISHA, MSHF
Potato seed systems in Guatemala	USAID	Design	ISHA, INA
PhD thesis in the Andes	McKnight	Design	ISHA, INA, SDM
PhD thesis in Kenya	WUR, RTB	Design	ISHA, INA, SDM
Cassava in Nigeria - BASICS	BMGF	Implementation	INA, MSHF
Sweetpotato in Africa (countries?)	???	Implementation	SDM?
Cassava in Cambodia and Vietnam	RTB	Implementation	MSHF
Banana in East Africa	RTB	Implementation	MSHF

ISHA: Integrated seed health approach MSHF: multi-stakeholder framework INA: Impact network analysis SDM: degeneration modelling

BASICS

BUILDING AN ECONOMICALLY SUSTAINABLE, INTEGRATED CASSAVA SEED SYSTEM

Seed Quality & Protocols

Consumer Demand & Money

Seed & Information

Outcomes

- 3+ seed companies selling high quality early generation seed:
 - Processor led multiplication
 - National Program (NRCRI)
- Two seed loops:
 - Processor outgrowers
 - Village seed entrepreneurs

Piggy backing

- Seed network maps
- Control: current seed system
- Interventions:
 - Processors loop (factories)
 - VSE loop (gari)
- Gender differentiated network map

Knowledge management: Other options

Sweetpotato Seed System Community of Practice

- "Outer membership" 120+ members
- •Smaller group 20-30 interacting on a regular basis
- •Google discussion groups
- •<u>www.sweetpotatoknowle</u> <u>dge.org</u> portal
- •Face to face meetings
- •Learning journeys

Cassava seed tracker

Integrated 'seed resource' management software for 'seed sector'

Users

Producers Researchers

Traders

Regulators Extension specialists

Logistics/input dealers

Potential official tool for seed registration, inspection and certification

Flexible and customizable to end user needs, other crops, and country seed regulations

Can RTB seed systems learn from each other?

Answer – part 1

- Yes!
- Strong progress in "rulers" for cross crop learning and modelling
- Knowledge Management:
 - RTB cross crop dedicated seed cluster
 - connect with sweetpotato seed system CoP

Answer – part 2

- BUT
- Limitations "ex-post" case studies
 - On-going seed system projects
- Missing rulers:
 - Profitability/willingness to pay
 - Multi-crop seed tracker

Thanks!

RESEARCH PROGRAM ON Roots, Tubers and Bananas