

EFFECT OF VINE HARVESTING ON ROOT AND VINE YIELD OF DIFFERENT SWEETPOTATO VARIETIES IN UGANDA

<u>Gerald Kyalo,</u> Elizabeth Akiror, Julius Mwine, Joseph Masereka, Sam Namanda, Robert O.M. Mwanga, Peter Lule, Ben Lukuyu, Sarah Mayanja and Diego Naziri

Research Program on Roots, Tubers and Bananas

JIFAD

Investing in rural people

MPU- CoP

2nd March 2017

Introduction

> Objectives

- Materials and Methods
- Results
- Conclusions

INTRODUCTION

CGIAR Research Program on Roots, Tuber and Banana

- Sweetpotato vine is a
 common fodder used by
 small-scale pig farmers in
 Uganda.
- Vines usually obtained at time of root harvesting but it is also possible to partially remove them during the production cycle (detopping).

Introduction cont'd

- Sweetpotato vines are highly perishable, lasting 2-3 days
- Making silage is an easy and affordable technology for conserving roots and vines for feeding pigs in times of shortage.

Introduction cont'd

- sweetpotato silage pig diets have successfully been tested, validated and promoted in Uganda under the framework of the RTB-ENDURE project
- Over 77 tons of SP silage made, and sold in Masaka and Kamuli districts
- However, vine harvesting from sweetpotato gardens to be used either as fresh fodder or processed into silage might compromise the root yield at harvest.
- Timing of vine harvesting is very important to achieve optimum root and fodder yield (Dual-purpose)

SP varieties released/ land races were not yet categorized -Dual purpose/ Forage/ Root (Nguyen and Leon Velarde, 2009).

- Assessing the effects of vine harvesting on the root yield of the four selected sweet potato varieties.
- Identify suitable dual-purpose sweetpotato varieties in Uganda
- Determine effect of vine harvesting on chemical composition of sweetpotato roots

Materials and Methods

- Study site: UMU farm Nkozi, Masaka (central region) and Kamuli (eastern Uganda).
- Experimental design: Split plot design with Varieties as main plots and vine harvesting time as sub plots
- Sweetpotato varieties: NASPOT 11 (cream), 12 O, 13 O (Orange) and local variety
- Plot sizes were 10m x 10m, Net plot sizes for detopping/ no detopping were 4mX5m (10m² each)

Data collection: data was collected on fresh weight of vines at 85, and150 days after planting (DAP), fresh root weight at 150 DAP, SPVD and Alternaria blight and weevil infestation (scale of 1-9, 1- no infection/infestation, 9severe)

Root- vine ratio was computed using root and vine dry matter

Data analysis: Data was analyzed using Genstat 12th edition.

Results

Root, vine yield and root-vine ratio of four sweetpotato varieties under different vine cutting regimes in Nkozi 2015B and 2016A Program on Roots, Tubers and Bananas

Variety	Trt	Root yield (t ha⁻¹)		Vine yield (t ha⁻¹)		Root-vine ratio		SPVD infection		Weevil infestation	
		2015B	2016A	2015B	2016A	2015B	2016A	2015B	2016A	2015B	2016A
Local	D	3.9	5.2	16.3	24.0	0.8	0.5	4	4	3.5	3.3
	ND	9.9	9.8	22.6	19.6	1.5	1.4	4	5	4.5	3.7
NAS 11	D	9.6	10.4	23.4	19.4	1.7	1.2	3	3.5	2.5	3.3
	ND	8.5	11.4	21.1	27.7	1.5	1.3	3	3	4.7	3.7
NAS 12	D	5.6	12.1	16.5	26.7	1.1	1.1	2.8	3.5	5.0	3.5
	ND	5.9	12.8	17.9	26.6	1.0	1.0	3	3.5	4.3	3.7
NAS 13	D	4.6	10.6	17.2	21.5	1.0	1.0	3.8	4.5	2.5	3.3
	ND	6.3	12.1	18.2	24.5	1.0	1.0	3.5	3.5	3.0	3.7
Mean		8.7		21.5		1.2		3.6		3.6	
LSD season 2.0		.0	3.4		NS		0.2		0.4		
LSD Varty x Season x Trt		NS		NS		0.5		NS			
CV		22.0	22.0		9.3		6.2				10

Root, vine yield and root-vine ratio of four sweetpotato varieties under different vine cutting regimes in Masaka and Kamuli 2016A												
Variety Trt		Root yield (t ha⁻¹)		Vine yield (t ha ⁻¹)		Root-vine ratio		SPVD infection		Weevil infestation		
		KML	MSK	KML	MSK	KML	MSK	KML	MSK	KML	MSK	
Local	D	1.8	7.0	7.6	25.9	0.7	0.5					
	ND	2.5	8.5	9.2	23.3	0.4	0.6	4	3.3	4	3.3	
NAS 11	D	6.1	17.8	6.2	14.5	2.0	2.9	2.0	2.0	2.8	2.5	
	ND	3.2	17.5	5.0	25.0	1.7	1.6	2.0	2.0	2.0	2.3	
NAS12	D	3.7	7.4	6.8	18.6	1.3	1.0					
	ND	5.1	12.8	8.3	21.7	1.6	1.3	2.5	2.5	3.0	2.5	
NAS 13	D	3.4	7.3	7.2	19.2	1.3	0.8					
	ND	4.8	9.8	7.8	25.0	1.5	0.9	3.0	3.0	3.0	3.0	
Mean		7.4		14.5		1.3		3.1		3.0		
LSD vty	LSD vty x site		3.2		NS		NS		NS		0.5	
CV		7.2		6.5		4.5		18.3		5		

-

Varieties can be graded as;

ſ	Variety	Average R/Vine Ratio	Comment
	Local	0.8	Forage
	NASPOT 11	1.7	High dual purpose
	NASPOT 12	1.2	Low dual purpose
	NASPOT 13	1.1	Low dual purpose

R/V= 0 - 1 = forage, 1-1.5 = low dual purpose, 1.5 - 2.0 = high dual purpose, 2-3 =low root production, > 3 = high root production (Nguyen and Leon Velarde, 2009)

Table: Effect of treatment on chemical composition of sweet potato roots											
	Parameter										
<u>Treatment</u>	DM	Glucose	Fructose	Sucrose	Starch	Zn	Fe	СР			
D	32.33	2.4	1.45	7.18	70.94	0.87	1.51	4.25			
ND	31.91	1.97	1.25	5.68	69.28	0.80	1.34	3.77			
P-value	<0.000	< 0.000	< 0.000	< 0.000	0.23	0.308	0.005	0.154			

Detopped roots had higher dry matter and sugars than the non detopped.

Conclusion & Recommendation

- NASPOT 11 performed best in terms of yield in all locations
- Detopping reduced root and vine yields in all varieties except NASPOT 11
- > NASPOT 11 is a suitable dual purpose sweet potato variety
- Harvesting vines from the local variety reduced yield by over 60%
- Detopping increased DM and amount of sugars of SP roots
- Farmers intending to harvest vines for silage should plant NASPOT 11, or NASPOT 12 and 13
- Need to test effect of vine harvesting on all OFSP and other SP varieties.

Enabling poor rural people to overcome poverty

Thank you for Listening

