

Impact of inclusion of cassava flour in bread formulations in West Africa; lessons learnt and recommendations for scaling OFSP puree bread

Ibok Oduro (PhD) Department of Food Sci. & Tech., ibok.oduro@gmail.com

Background

- Different recipes have been tried for development of the cassava-wheat composite bread
 - However, trials were under laboratory conditions and acceptance limited to small sections along the bread value chain (Eriksson et al. 2014; Eddy et al. 2007; Shittu et al. 2007; Nwosu et al. 2014)
- Thus, the need for recipe standardization with bread stakeholders for optimum bread quality

Summary of Methodology

Recipe collection

- Obtained and verified on-site from 29 Bakers
 - Eastern Region (Koforid
 - Ashanti region (Kwa

Recipe standardization proc

From survey data,

Averages of **each basic ingredient** was determined and used as the <u>test recipe</u>

> Easy acceptance and adaptability by commercial bakers

Moving away from laboratory based recipe development

"Learning to learn"

Create/ Generate Knowledge with the **bakers**

Transfer

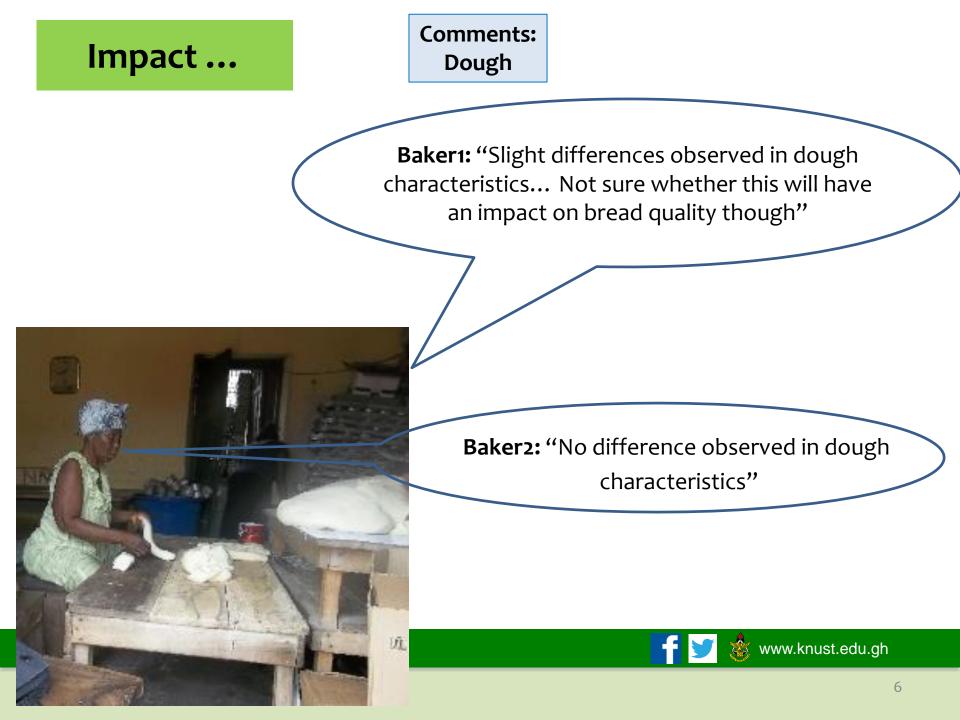
Ownership

Summary of Methodology

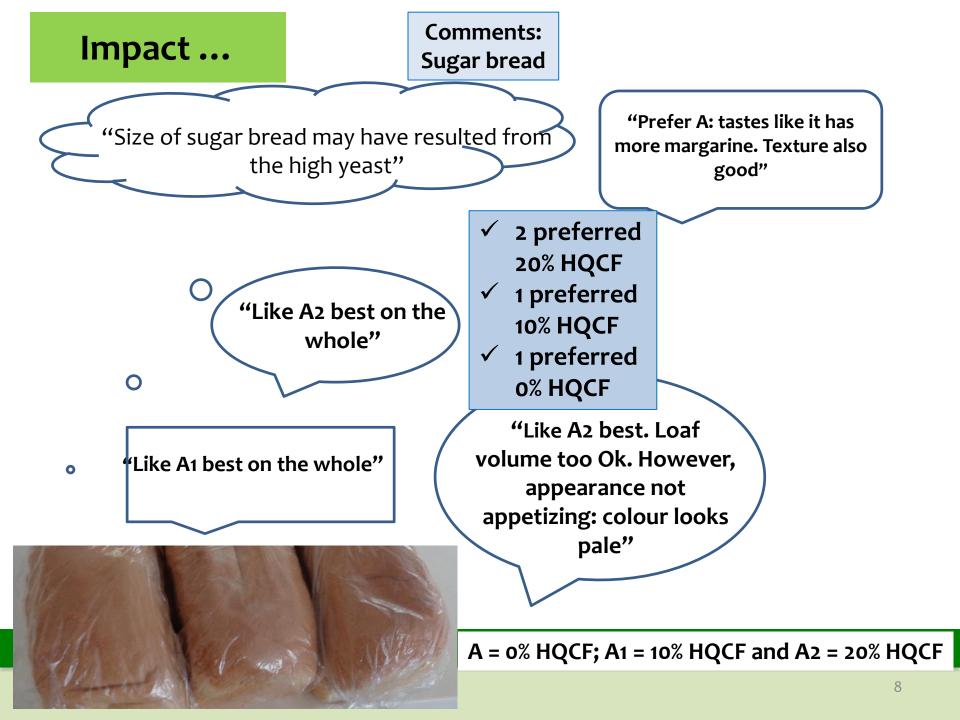
Recipe standardization process ...

- Two bakers tried the test recipe
- Two bakers modified the test recipe to obtain standard recipe
- Four bakers (3 regions) tested the standard recipe

Using commercial bakers with their own setup



Kwame Nkrumah University of Science & Technology, Kumasi, Ghana


Impact of HQCF Inclusion on Breads Produced

Some comments from bakers and distributors

A = 0% HQCF; A1 = 10% HQCF and A2 = 20% HQCF

Table 1. Physical properties of tea bread samples

	ТА	TA1	TA2
Dough weight	309.42(0.22) ^a	309.42(0.20) ^a	309.56(0.29) ^a
Bread weight	298.18(3.98) ^a	281.56(1.85) ^a	280.21(2.79) ^a
Bread volume	1597.00 ^a	1371.00 ^b	1308.33 ^c
Specific volume	5.74(0.08) ^a	4.87(0.08) ^b	4.64(0.07) ^c
Specific density	0.17(0.00) ^a	0.21(0.00) ^b	0.21(0.00) ^b

Value represented as mean (standard deviation) Values in the same row with different superscripts are significantly different at p<0.05 TA – Tea bread 0%HQCF, TA1 – Tea bread 10%HQCF and TA2 – Tea bread 20%HQCF

Implication of physical characteristics of bread samples

- Substituting wheat flour with HQCF in <u>tea bread</u> significantly increased (p<0.05) its density
 - It will be more filling per unit bread
 - This may be preferred by the Ghanaian consumer who looks out for heavy bread loaf
- Specific volume of <u>tea bread</u> samples significantly decreased (p<0.05) with increasing substitution of HQCF

- The Ghanaian consumer also prefers bigger loaves, thus the need

to create the balance between the specific volume and density

Impact ...

Table 2. Physical properties of sugar bread samples

	SA	SA1	SA2
Dough weight	309.46(0.18) ^a	309.50(0.30) ^a	309.41(0.32) ^a
Bread weight	287.80(1.79) ^a	284 . 45(2.02) ^a	285.87(2.26) ^a
Bread volume	1348.33 ^a	1324.00 ^a	1298.33 ^a
Specific volume	4.69(0.30) ^a	4.65(0.37) ^a	4.54(0.35) ^a
Specific density	0.21(0.01) ^a	0.22(0.02) ^a	0.22(0.02) ^a

Value represented as mean (standard deviation) Values in the same row with different superscripts are significantly different at p<0.05 SA – Sugar bread 0%HQCF, SA1 – Sugar bread 10%HQCF and SA2 – Sugar bread 20%HQCF

Impact ...

Implication of physical characteristics of bread samples

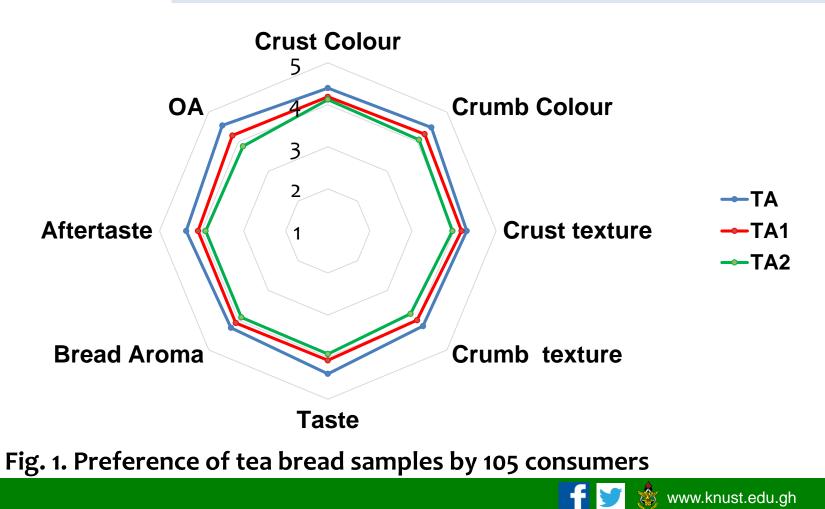
- Substituting wheat flour with HQCF in <u>sugar bread</u> was not significantly different (p>0.05) for specific volume and density
 - Thus, when the composite flours are used in sugar bread, there may not be any observable difference in the physical characteristics.

Influence of bread type and ingredients on specific volume and density

- A significant difference was observed between tea and sugar bread with respect to specific volume and density
 - This may be due to the variation in quantity of ingredients used

Impact ...

Plate 1. A cross-section of sugar bread samples

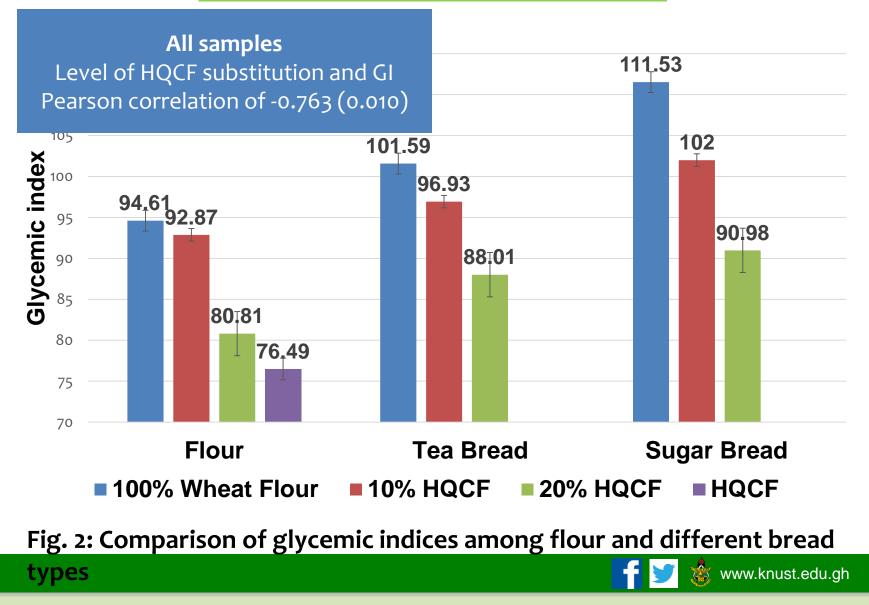

Plate 2. A cross-section of tea bread samples

SA – Sugar bread 0%HQCF, SA1 – Sugar bread 10%HQCF and SA2 – Sugar bread 20%HQCF TA – Tea bread 0%HQCF, TA1 – Tea bread 10%HQCF and TA2 – Tea bread 20%HQCF

Impact ...

TA – 0% HQCF tea bread, TA1 – 10% HQCF tea bread,

- TA2 20% HQCF tea bread
- 1 = dislike very much, 2 = Dislike moderately, 3 = neither like nor
- dislike, 4 = Like moderately and 5 = Like very much



- The consumer acceptance for
 - 10% HQCF tea bread was similar to the control for all attributes except crust colour
 - All sugar bread samples were similar in crust colour and texture, and bread aroma
- Variances in recipe were in the levels of margarine, sugar and salt which reflected the bread types

Impact on glycemic index

Impact on shelf life

Shelf life of cassava composite stored under different conditions

Sugar Bread

- Shelf life at elevated temperature (26-35°C)
- Standard recipe
- Baked Control (100% wheat) was 7 days 6 hours Composite bread (90% wheat: 10% HQCF) 5 days 8 hours
 - Shelf life at room temperature (25-31°C)
- Standard recipe **f** Baked Control (100% wheat) was 8 days 16 hours Composite bread (90% wheat: 10% HQCF) 6 days 9 hours

Impact on shelf life

Shelf life of cassava composite stored under different conditions

Tea Bread

Stan

Bread stored at room temperature conditions tends to have a better shelf life than bread stored at elevated as done by bread retailers Standard recipe La Lo. JIS

www.knust.edu.gh

19

urs

Kwame Nkrumah University of Science & Technology, Kumasi, Ghana

Lessons Learnt

- Essential to build the confidence and personal skills of bakers in relation to the use of composite flours in baking through teamwork
- Importance of increased awareness on the use of cassava flour usage in the food industries to eliminate negative perceptions

Identified bread types

Wheat (bran) bread

The Ghanaian baker

 Compositing wheat flour and producing several composite bread otato bread ke bread

Honey bread

Corn bread

- Soya bread
- Chocolate bread

- Banana bread
- Coconut bread

Responses on the knowledge and potential for acceptability of bread from wheat-HQCF composites

- **52.9**% of bakers interviewed had knowledge on the inclusion of other flours as composites
- 37.5% knew of the inclusion of HQCF in baked products
 - 43.8% of these bakers had knowledge of the use of HQCF in bread making
- 81.3% of bakers were willing to use HQCF if proven to be successful

Common bread types in Ghana

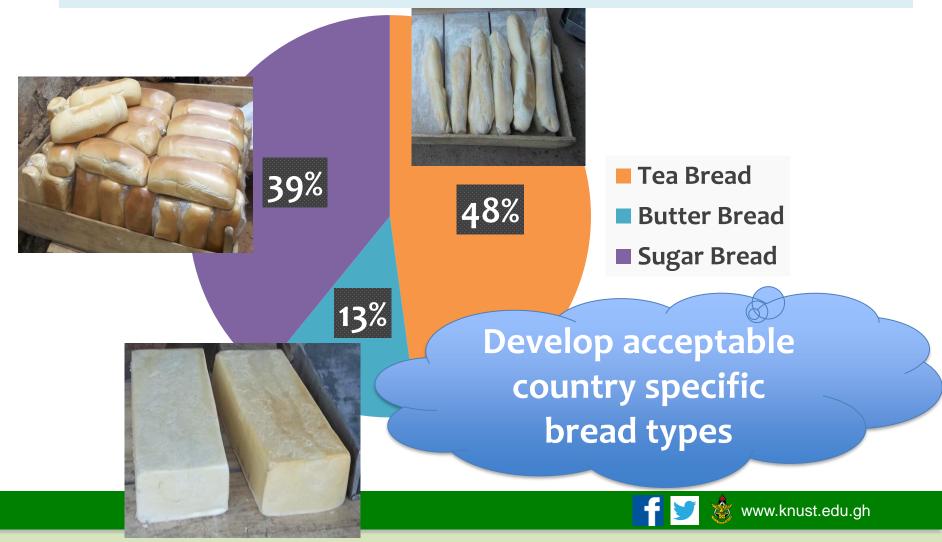


Fig. 3. Most produced bread types in the combined study areas

Table 3. Overview of the weights of basic ingredients per50kg flour for the three bread types

Ingredient	Butter Bread (N=11)	Sugar Bread	Tea Bread (N=16)
Sugar (kg)		o of sugar to sa Igh proofing ar	
Salt (kg)	0.10,	quality	
Margarine (kg)	3.18 Тур	e and quantity	of yeast
Yeast (kg)	affe	cts dough pro	
Water (L)	10 - 30	bread quali	ty - 40
	d types d in recipe		

- Identified commercial High Quality Cassava Flour Producers
 - JOSMA processing limited, Mampong
 - Food Research Institute CSIR, Legon
 - ✓ Involve all relevant stakeholder to foster uptake
 - ✓ The need for the production of quality flour

Preparation of Composite flour

Commercial mixer at bakeries

Kitchen mixer in the laboratory

Profitability of Cassava Composite Bread

- In Ghana, 61 food and bakery industries use 822 MT of HQCF out of the 1,384.3 MT supplied annually Dziedzoave & Hillocks 2012
- Currently in Ghana, a 50 kg bag of HQCF costs GH¢ 120.00 (\$26.30) whereas wheat flour cost GH¢ 250.00 (\$ 54.79) (FRI, 2017)
- For every **one naira (N1)** invested into the cassava wheat composite business, there is a profit of **N3.3** if all things being equal

Mgbakor et al. 2014

- Difficulty in getting willing bakers to take part in the project
- Mixing was an essential unit operation that affects bread quality
- Reliable supply of High Quality Cassava Flour
- Composite bread shelf life is less than the 100% wheat

Recommendation for scaling OFSP puree bread

- Reliable OFSP flour/ OFSP puree supply
- Involve all major bread stakeholders (Bakers, ...
- OFSP puree bread recipe formulation
 - Country specific bread types
- Study the impact of puree on dough characteristics and quality of bread produced

Recommendation for scaling OFSP puree bread ...

- Demonstrating the profitability of substituting wheat flour with OFSP puree
 - Conduct a feasibility survey with bakers within small region in various countries
- Conduct epidemiology studies to establish an authoritative health claim for OFSP composite bread
- Study the shelf life of composite OFSP puree/flour bread

Recommendation for scaling OFSP puree bread ...

- Managing the mixing of puree and wheat flour
 - Can existing technology by commercial bakers be used
- Cassava as a crop is backed by policy in most West African countries
 - How about sweetpotato?

