

Long-term storage of fresh sweetpotato roots to reduce puree supply chain risks

Tanya Stathers¹, Penina Muoki², Bethwell Kipkoech³, Benard Otieno³, Jan Low⁴, Tawanda Muzhingi⁴, Andy Marchant¹, Debbie Rees¹

¹Natural Resources Institute (NRI), University of Greenwich, UK. Contact: <u>t.e.stathers@gre.ac.uk</u>
 ²International Potato Centre (CIP), Kisumu Office, Kenya. Contact: <u>p.muoki@cgiar.org</u>
 ³CIP OFSP processing intern based at Organi Ltd., Kabondo Kasipul sub-county, Nyanza, Kenya.
 ⁴International Potato Centre (CIP), Nairobi Office, Kenya. Contact: <u>j.low@cgiar.org</u>

Presented at the Sweetpotato Marketing, Processing and Utilisation Community of Practice meeting - Kisumu, Kenya, 2-3 March 2017

Presentation outline

Objective

Background context

Approach

Highlights from findings

Discussion

To maintain the puree-making quality of >5 tonnes of freshly harvested orange-fleshed sweetpotato roots during a 3-4 month storage period in a hot tropical area of sub-Saharan Africa

Background context

- A large Kenyan supermarket chain has begun using orangefleshed sweetpotato puree in its bakeries to produce a vitamin A rich bread which urban consumers enjoy
- To maintain such market opportunities, the processors need to provide a year-round supply of high quality OFSP puree
- To do this, they require fresh OFSP roots, however sweetpotato production is rain-fed, and there are gluts and shortages in the root supply during the year and associated price fluctuations

Approach – Set-up (1/4)

LTS4 trial set up on 13&14 Dec 2016; ~35-40 kgs roots per crate NB: Limited Vita roots hence fewer crates

Approach – Root curing (2/4)

• Sweetpotato roots retain the ability to heal wounds after harvest.

Cured

- To "cure" roots at start of storage they are exposed to high humidity so that wounds do not dry out, and warm temperatures so that roots can actively metabolise.
- The wound-healing process involves the synthesis of a layer of lignin to provide a barrier to water loss and entry of rotting pathogens, followed by the synthesis of a new periderm (skin) underneath this.

- 1. Uncertainty over curing period required
- 2. Wanted to compare external and internal signs
- ~12 roots per trt had small areas of peel removed and were placed in stores
- 4. Each day we cut into the roots to see if the periderm had thickened or not
- 5. It took 5 days of curing at 30C & 95% rh for this to happen, although externally roots appeared to cure within 1-2 days.
- Curing conditions were kept on for 5 days in stores and then active cooling started on 6th day (8am on 19/12/2016)

Approach – Experimental design (3/4)

Month 3 8

Week 2

Month 4 8

Week 6

Sampling plan and calendar - LTS 4 (Dec 2016)

Sampling:

Month 1 Month 2

Store 1 - Solar powered

Back wall

2	B22	A14	A3	A7	to
021	A32	A9	A21	B17	middl
21	88	A6	D9	B32	botton

D27	C8	C1	C2		top
89	D7	A29	D3		middle
831	A26	D13	C23	815	bottom

26	D2	A30	D25	B24	to
17	B25	A16	A17	D5	midd
)6	B12	D28	D11	A19	botto

B11	87	C9	A13	top
B23	C4	C12	67	middle
B14	C19	C11	A23	bottom

Door

Store 2 - Mains powered

Back wall

A15	D15	B19	B1	D4	to
D12	A18	86	A10	A24	middl
D22	C18	A12	A25	C16	botton

813	D19	C10	AS	A27	top
A2	A33	D1	B3	C20	middle
D14	A20	B16	D17	B18	bottom

B26	A1	C6	C24	A28	tr
D8	A5	C3	C15	C14	midd
A22	B29	A11	C13	D10	botto

0.00

525						
A4	B33	C5	D18	84	top	
B27	B21	B5	B30	D16	middle	
A31	B20	D20	C22	B10	bottom	

Approach – Sampling (4/4)

Raw root quality analysis

Each box weighed: roots counted, scored for general appearance, sponginess, shrivelling

Roots sorted, count and weigh of good quality and defective. The defective then counted and weighed 1st by surface damage, then by sprouted, then by weevil damaged, then by rotten. Portion of rotten and weevil roots needing discarding then cut out and weighed.

3 randomly selected roots of each treatment then vacuum packed and sent to FANEL for lab analysis (mc, Beta-carotene)

Simple quality analysis of puree

25 kgs roots/ treatment, washed, steamed, cooled, cut, pureed.

Sugar content (brix refractometer), puree stickiness, thickness, colour recorded. Puree sample sent to FANEL for betacarotene and bread making quality analysis

Highlights from findings (1/6)

Figure 1. Mean % weight loss per crate since set-up (n=3)

Highlights from findings (2/6)

Figure 2. Mean root general appearance score per crate (*n=3*)

11 Natural Resources Institute

Highlights from findings (3/6)

Figure 3. Mean % of roots with any signs of surface mould on them (by number)

Highlights from findings (4/6)

Figure 5. Mean % of roots with any signs of weevil damaged roots (by number)

- damage increasing. Live weevils that have emerged also being found.
- No. of roots with rots • increasing over time. Higher in Kabode than Vita, but not a big difference between washed and unwashed roots.

Store 2 Store 2

Highlights from findings (5/6)

Figure 7. Mean portion of fresh sweetpotato roots per crate of good quality for puree processing versus needing discarding after 6 weeks and 2 months storage

Mean portion of roots of good quality for processing into puree
At 2 months storage 89% of root weight was good quality, (Store 1: 92%; Store 2: 86%)

•

 Kabode roots in Store 2 whether washed (W) or unwashed (UW) had most quality deterioration, although >70% was usable for puree after 2 months storage

Natural Resources

Institute

Highlights from findings (6/6)

Treatment codes: A= Kabode washed; B = Kabode unwashed; C = Vita washed; D = Vita unwashed Example

Example of very small portion of roots that actually needs discarding

Discussion

- Promising that 89% of roots can be used in puree supply chain after 2 months storage.
- Thorough sorting of roots prior to storage has helped delay and reduce build up of weevil pests and damage, but weevils are emerging and feeding/ breeding on the stored roots.
- Rots and sprouting also increasing over time.
- No obvious superiority in quality of washed vs unwashed roots yet.
- Trial will continue to 4 months storage.
- Puree quality data will also be analysed.
- Ongoing work to cost-effectively bring storage temperatures down to 15-17C, to help reduce weevil survival and reproduction, root sprouting and rotting.

Long-term storage of fresh sweetpotato roots to reduce puree supply chain risks

Natural Resources Institute

Tanya Stathers¹, Penina Muoki², Bethwell Kipkoech³, Benard Otieno³, Jan Low⁴, Tawanda Muzhingi⁴, Andy Marchant¹, Debbie Rees¹

¹Natural Resources Institute (NRI), University of Greenwich, UK. Contact: <u>t.e.stathers@gre.ac.uk</u>
 ²International Potato Centre (CIP), Kisumu Office, Kenya. Contact: <u>p.muoki@cgiar.org</u>
 ³CIP OFSP processing intern based at Organi Ltd., Kabondo Kasipul sub-county, Nyanza, Kenya.
 ⁴International Potato Centre (CIP), Nairobi Office, Kenya. Contact: <u>j.low@cgiar.org</u>

Presented at the Sweetpotato Marketing, Processing and Utilisation Community of Practice meeting - Kisumu, Kenya, 2-3 March 2017