Stability of β-carotene during baking of orange-fleshed sweetpotato-wheat composite bread and estimated contribution to vitamin A requirements

> Madjaliwa Nzamwita Amanda Minnaar & Gyebi Duodu

> > 1 March, 2017

Introduction

- Vitamin A deficiency is a public health problem
- The main strategy used to fight against VAD has been the distribution of high dose capsules of vitamin A
- Need for alternative source of vitamin A
- Orange-fleshed sweet potato (OFSP) is recognised as a rich and cheap source of vitamin A as it contains high amounts of β -carotene.

 However, the baking process may adversely affect β-carotene in OFSP-wheat composite breads as well as their vitamin A activity.

Materials and Methods

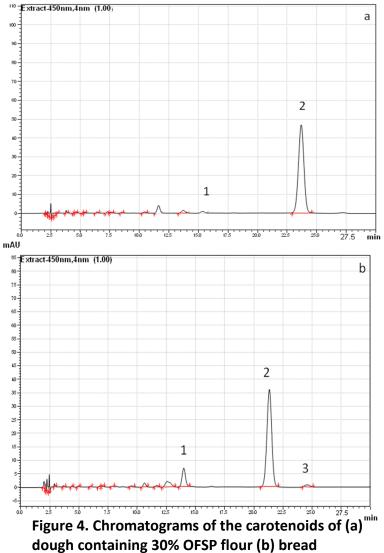
+ Wheat flour

Fig 1. OFSP flour production

Fig 2. Wheat-OFSP composite bread

Colour analysis

Colour analysis was done based on L*a*b* value:


L* (measure of lightness ranging from 0-100 indicating black to light), a* (+a, redness and –a, greenness) and b* (+b, yellowness and –b, blueness) values (Shalini & Laxmi, 2007). Chroma and hue angle according to the method of Little (1975) as follows:

Chroma= $\sqrt{a^2+b^2}$ Hue angle= tan⁻¹(b/a)

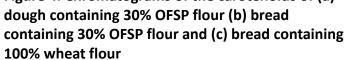

Analysis of the carotenoids

Figure 3. Chromatographic analysis of the carotenoids

mAU

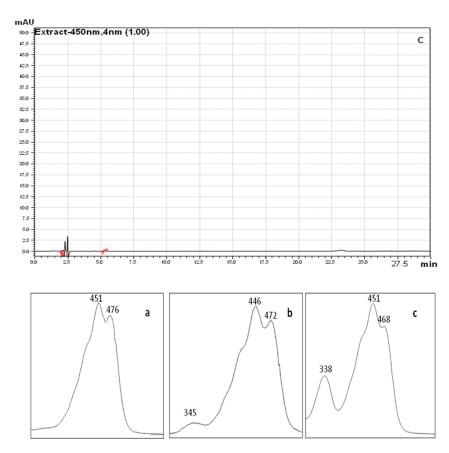


Figure 5 Photodiode array spectra of (a) all-trans- β carotene, (b) cis-9- β -carotene and (c) cis-13- β carotene

NB: The separation of carotenoids was performed at 25°C on a C30 YMC carotenoid column

Results and discussion

Table 1. Effect of substituting wheat flour with OFSP flour and baking on β -carotene (db) content in OFSP-wheat composite breads ^a

	Dough			Bread				
OFSPF:WF (w/w)	All- <i>trans</i> -β- carotene (µg/100g of dough)	13- <i>cis</i> -β- carotene (μg/100g of dough)	All- <i>trans</i> -β- carotene (µg/100g of bread)	9- <i>cis</i> -β-carotene (µg/100g of bread)	13- <i>cis</i> -β- carotene (μg/100g of bread)	Retention of All- <i>trans</i> -β- carotene (%) ^b	Vitamin A activity (µg RAE /100g of bread ^a)	
0:100	ND	ND	ND	ND	ND	ND	0.0	
10:90	3100.0 ± 57.0^{a}	39.6 ± 1.0^{a}	$2037.4\pm46.0^{\mathrm{a}}$	47.6 ± 1.2^{a}	349.6 ± 8.8^a	$65.7 \pm 1.5^{\mathrm{a}}$	186.3	
20:80	5956.0 ± 120.0^{b}	82.3 ± 1.2^{b}	$4251.7\pm85.0^{\text{b}}$	120.3 ± 2.3^{b}	703.5 ± 13.0^{b}	71.4 ± 1.4^{b}	388.6	
30:70	$8020.0 \pm 167.0^{\circ}$	$114.7 \pm 3.0^{\circ}$	$6657.1 \pm 101.0^{\circ}$	$148.4 \pm 4.1^{\circ}$	$862.6 \pm 14.0^{\circ}$	83.0 ± 1.2 ^c	596.9	

^a The standard deviations were not provided because the vitamin A activity (µg RAE /100g of bread ^a) of each type of bread was determined based on different forms of provitamin A carotenoids

^b The retention was determined based on the remaining amount of all-*trans*-β-carotene after baking because other carotenoids were formed at its expense.

Different subscripts in the same column indicate that means were significantly different (p < 0.05)

OFSPF: Orange-fleshed sweet potato flour, WF: wheat flour. RAE: Retinol activity equivalent.

Db: Dry basis

ND: Not detected

Table 2 Effect of baking on the retention of colour in OFSP-wheat composite bread

Colour of the dough						Bread colour ^a				
OFSPF:WF (%)	L*	a*	b*	Chroma	Hue angle	L*	a*	b*	Chroma	Hue angle
0:100	66.0±2.3ª	-0.2±0.1ª	11.7±0.7ª	11.7±0.7ª	-0.8±0.3ª	59.6±0.8ª	1.4±0.4ª	11.8±0.5ª	11.8±0.5ª	83.3±1.8ª
10:90	57.5±2.4 ^b	10.2±0.6 ^b	25±1.6 ^b	27±1.7 ^b	22.3±0.7 ^b	50.7±0.8 ^b	6.3±0.2 ^b	25.4±0.6 ^b	26.2±0.6 ^b	76.1±0.2 ^b
20:80	50.2±1°	15.2±0.4°	22.3±0.5°	27±0.6 ^b	34.2±0.5°	48.6±0.6°	10.7±0.1°	25.6±0.8 ^b	27.8±0.8°	67.2±0.4°
30:70	48.8±0.8°	18.4±0.5 ^d	22.7±1°	29.2±1 °	39±0.4 ^d	44±1.3 ^d	13.1±0.2 ^d	23±1.5°	26.4±1.4 ^{bc}	60.1±1.4 ^d

^a Crust and crumb blended together

Different subscripts in the same column indicate that means were significantly different (p < 0.05); n=3

0:100, 10:90, 20:80 and 30:70 represent wheat breads containing 0, 10, 20 and 30% OFSP flour respectively.

OFSPF: Orange-fleshed sweet potato flour; WF: wheat flour

Table 3 Relationship between the stability of all-trans β-carotene during baking andcolour parameters of OFSP-wheat composite bread^a

Parameters	L*	a*	b*	Chroma	Hue angle	Amount of all- <i>trans</i> -β- carotene retained	Amount of all- <i>trans</i> -β carotene lost
L*	1						
a*	-0.985*	1					
b*	-0.553**	0.575**	1				
Chroma	-0.710*	0.729*	0.978*	1			
Hue angle	0.981*	-0.987*	-0.444	-0.617**	1		
Amount of all- <i>trans</i> - β -carotene retained	-0.892*	0.889*	0.858*	0.941*	-0.822*	1	
Amount of all- <i>trans</i> - β carotene lost	-0.237	0.268	0.929*	0.842*	-0.123	0.633**	1

^a Crust and crumb blended together OFSP: Orange-fleshed sweet potato Significance level: *=p < 0.001 and **=p < 0.01

Table 4. Contribution (%) of OFSP-wheat composite breads (100 g portion, wb) to the RDA ofvitamin A in different groups a

OFSPF:WF (w/w)	3-10 years children (RDA=400 ^b)	AdolescentsAdult female10-18 years19-65 years(RDA=600°)(RDA=500°)		Adult male 19-65 years (RDA=600°)	Pregnant women (RDA=800 ^c)	Lactating women (RDA=850 ^c)	
0:100	0.0	0.0	0.0	0.0	0.0	0.0	
10:90	29.0	19.2	23.1	19.3	14.5	13.6	
20:80	61.0	40.7	48.8	40.7	30.5	28.7	
30:70	89.2	59.5	71.4	59.5	44.6	42.0	

^a The standard deviations were not provided because the contribution of each type of bread was determined based on different forms of provitamin A carotenoids.

^b RDA adapted from FAO (1988), reviewed by Woolfe (1992).

^c RDA adapted from FAO/WHO (2005).

unierent groups									
OFSPF:WF (w/w)	Provitamin A carotenoids	Vitamin A (µg RAE/100g of bread)	3-10 years children (RDA=400 ^a)	Adolescent 10-18 years (RDA=600 ^b)	Adult Female (RDA=500 ^b)	Adult male (RDA=600 ^b)	Pregnant women (RDA=800 ^b)	Lactating women (RDA=850 ^b)	
	9- <i>cis</i> -β-carotene	$0.0\pm0.0^{\mathrm{a}}$	$0.0\pm0.0^{\mathrm{a}}$	$0.0\pm0.0^{\mathrm{a}}$	$0.0\pm0.0^{\mathrm{a}}$	$0.0\pm0.0^{\mathrm{a}}$	$0.0\pm0.0^{\mathrm{a}}$	$0.0\pm0.0^{\mathrm{a}}$	
0:100	13- <i>cis</i> -β-carotene	0.0 ± 0.0 a	0.0 ± 0.0 a	$0.0\pm0.0^{\ a}$	$0.0\pm0.0^{\text{ a}}$	0.0 ± 0.0^{a}	$0.0\pm0.0^{\mathrm{a}}$	$0.0\pm0.0^{\ a}$	
	All- <i>trans</i> -β-carotene	0.0 ± 0.0 ^a	0.0 ± 0.0 ^a	0.0 ± 0.0 ^a	0.0 ± 0.0 a	0.0 ± 0.0^{a}	0.0 ± 0.0 a	0.0 ± 0.0 ^a	
	9- <i>cis</i> -β-carotene	1.2 ± 0.0 a	$0.3 \pm 0.0^{\mathrm{a}}$	$0.2 \pm 0.0^{\mathrm{a}}$	$0.2\pm0.0^{\mathrm{a}}$	$0.2\pm0.0^{\mathrm{a}}$	$0.2\pm0.0^{\mathrm{a}}$	0.1 ± 0.0^{a}	
10:90	13- <i>cis</i> -β-carotene	9.0 ± 0.2^{b}	2.3 ± 0.1^{b}	$1.5\pm0.0^{\mathrm{b}}$	$1.8\pm0.0^{\mathrm{b}}$	1.5 ± 0.0^{b}	$1.1 \pm 0.0^{\mathrm{b}}$	$1.1 \pm 0.0^{\mathrm{b}}$	
	All- <i>trans</i> -β-carotene	$105.4\pm2.4^{\rm c}$	$26.4\pm0.6^{\text{c}}$	$17.6\pm0.4^{\rm c}$	$21.1\pm0.5^{\rm c}$	$17.6\pm04^{\circ}$	$13.2\pm0.3^{\rm c}$	$12.4 \pm 0.3^{\circ}$	
	9- <i>cis</i> -β-carotene	$3.1\pm0.1^{\mathrm{a}}$	$0.8 \pm 0.0^{\mathrm{a}}$	$0.5\pm0.0^{\mathrm{a}}$	$0.6 \pm 0.0^{\mathrm{a}}$	$0.5\pm0.0^{\mathrm{a}}$	$0.4 \pm 0.0^{\mathrm{a}}$	$0.4 \pm 0.0^{\mathrm{a}}$	
20:80	13-cis-β-carotene	$18.4\pm0.3^{\text{d}}$	$4.6\pm0.1^{\text{d}}$	3.1 ± 0.1^{d}	$3.7\pm0.1^{\text{d}}$	3.1 ± 0.1^{d}	2.3 ± 0.0^{d}	2.2 ± 0.0^{d}	
	All- <i>trans</i> -β-carotene	$222.5\pm4.4^{\text{e}}$	55.6 ± 1^{e}	37.1 ± 0.7^{e}	44.5 ± 1^{e}	37.1 ± 0.7^{e}	$27.8\pm0.6^{\text{e}}$	$26.2\pm0.5^{\text{e}}$	
	9- <i>cis</i> -β-carotene	$3.7\pm0.1^{\mathrm{a}}$	$0.9\pm0.0^{\mathrm{a}}$	$0.6\pm0.0^{\mathrm{a}}$	$0.7\pm0.0^{\mathrm{a}}$	$0.6\pm0.0^{\mathrm{a}}$	$0.5\pm0.0^{\mathrm{a}}$	$0.4\pm0.0^{\mathrm{a}}$	
30:70	13- <i>cis</i> -β-carotene	$21.5\pm0.3^{\rm d}$	$5.4\pm0.1^{\text{d}}$	3.6 ± 0.1^{d}	$4.3\pm0.1^{\rm d}$	$3.6\pm0.1^{\text{d}}$	2.7 ± 0.0^{d}	2.5 ± 0.0^{d}	
	All- <i>trans</i> -β-carotene	$331.7\pm5^{\rm f}$	$83\pm1.3^{\rm f}$	$55.3\pm0.8^{\rm f}$	$66.3\pm1^{\rm f}$	$55.3\pm0.8^{\rm f}$	$41.5\pm0.6^{\rm f}$	$39\pm0.6^{\rm f}$	

Table 5. Contribution of individual provitamin A carotenoids to the RDA of vitamin A indifferent groups

Different subscripts in the same column indicate that means were significantly different (p < 0.05)

^a RDA adapted from FAO (1988) as reviewed by Woolfe (1992).

^b RDA adapted from FAO/WHO (2005).

RDA: Recommended Dietary Allowance.

The retinol activity equivalency factors of 12:1 (FAO/WHO, 2005) and 24:1 (Haskell, *et al.*, 2004) were used for all-*trans*-β-carotene and *cis* isomers respectively.

0:100, 10:90, 20:80 and 30:70 represent wheat breads containing 0, 10, 20 and 30% OFSP flour respectively.

OFSPF: Orange-fleshed sweet potato flour.

WE: wheat flour

Conclusions

- Baking causes the degradation of all-*trans*-β-carotene which results into the formation of new forms of carotenoids in the *cis* configuration with low vitamin A activity.
- Nevertheless, breads (100 g portion) containing 20% and 30% OFSP flour can
 potentially be used for the eradication of vitamin A deficiency in children as they
 were found to contribute more vitamin A for children between the age of 3 and 10
 years.
- As far as pregnant and lactating women are concerned, they may need more of OFSP bread (> 100 g) to fulfil both their vitamin A requirements and those of their children.
- These findings indicate that colour parameters such as a* value, hue angle and chroma may, in part, be used to predict the β-carotene content in breads or any other products containing OFSP flour if the OFSP cultivar used does not contain other natural colorants.

Obrigado!