



# Utilization of Orange-Fleshed Sweet Potato in Teff-Based Complementary Foods

### Mesfin W. Tenagashaw Dr. John Kinyuru, Prof. Glaston Kenji, Dr. Eneyew Melaku

# Food Science and Nutrition Programme Jomo Kenyatta University of Agriculture and Technology

**Presented at:** 

4<sup>th</sup> Annual Meeting

SPHI Marketing, Processing and Utilization Community of Practice (MPU-CoP)

1st-3rd March 2017, Kisumu, Kenya

# **Presentation Outline**

- Background
  - Objectives
- Materials and Methods
  - Raw materials
  - Processing of CF
  - Laboratory analyses
- Results and discussion
- Conclusion



- Being free of malnutrition declared <u>basic human right</u> (UN, 1948)
- Micronutrient malnutrition/hidden hunger
- A major <u>nutritional disorder in Sub-Saharan Africa</u> and South-East Asia
  - One-third of world's population affected
  - worse among infants and children- during transition period
  - Major MNDs: Vitamin A, Iron, Zinc, Folic Acid, Iodine
  - Globally, 127 million children affected by VAD
- Negative impact on <u>economic development</u> of a nation
  - Public health costs
  - C-Loss of human capital

# Background...cont'd

### Ethiopia's Scenario:

- > MNM contributes to 53% of infant deaths
- ► The sixth highest country in the world (MoH, 2004)
  - The second highest rate in Africa
    - 61% of children (6-59 months) affected with VAD
      - Estimated 50,000 deaths each year
    - 44% of children (6-59 months) are anaemic
- Limited access to commercial/fortified complementary foods and/or animal origin foods
- Dependence on <u>high bulk, low nutrient- and energy-dense</u> cereal-only or cereal-legume foods
- Inappropriate infant feeding practices:

© Only 4% of children (6-23 months) fed appropriately (EDHS 2011)

# Background (cont'd)

### Current recommendations on infant feeding:

- Starting complementary foods from 6 months
- Use of local crops (cereals, legumes, tubers) through blending
- Application of household-level or small-scale processing methods
- Improving energy and nutrient density, digestibility, bioavailablity, porridge consistency



# Background (Cont'd)

⇒<u>Thus, there is a need for complementary foods with</u> <u>appropriate formulation and processing in the SSA:</u>

- Readily available/affordable
- Nutritious and safe (rich in micronutrients)
- Desirable consistency/solid content
- Acceptable in a given community



A well-fed infant is healthy, happy and productive! (WHD, 2000)



- ⇒To develop and evaluate <u>vitamin A, selected minerals</u> <u>and their bioavailability</u> in complementary foods (CFs):
  - produced from a blend of <u>teff, soybean and orange-fleshed</u>
     <u>sweet potato (OFSP)</u>
  - using household-level combined methods and extrusion cooking

# **Materials and Methods**

### Raw Materials

#### Teff (Eragrostis tef)

✓ Rich in iron (especially the red variety)✓ Excellent essential amino acids balance

### Soybean (Glycine max)

✓ Rich in protein (quality + Quantity)
✓ Well-balanced amino acid pattern
✓ Higher fat content (energy)

#### C<sup>-</sup>Sweet potato (*Ipomoea batatas*)

The orange-fleshed variety (OFSP)\_Tula
 Rich in β-carotene (Vitamin A precursor
 More than 80% of total carotenoids in OFSP is β-carotene

✓ Antioxidant activity, sweetness (fructose)



Fig 2. Raw materials (Teff, soybean, sweet potato)

Processing Approaches for CFs

Two different processing approaches were employed:

i. Household-level approach ⇒Combined strategies

ii. Industrial-level approach⇒Extrusion cooking



I can take only 200 ml of food at a time
Don't fill me with just water!

# i. Household-level methods



### Teff processing (ARF preparation) - Badau et al. (2006):

- ✓ Cleaning, washing, soaking (12 h)
- ✓ Germinated for two durations (24 h, 48 h)
- ✓ Drying, milling
  - ✓ Germinated teff flour (ARF)
  - Added to the CF at 10% level

⇔60% is ungerminated





### Soybean processing:

> Using two different approaches:

- Blanching: 100 °C for 10 min (lombor et al., 2009)
- **Roasting:** 170 °C for 15 min (WFP, 2004)

+ Dehulling, Decortication, Milling



**SOYBEAN GRAINS** 



Fig 3. Processing of soybean seeds (a. Roasting b. Blanching)

a.

### **OFSP** Processing:

# According to the method described by Haile et al., (2015) Peeling, slicing, blanching, drying, milling Blanching inactivates enzymes that affect β-carotene



### Fig 4. Processing of OFSP

#### > Finally, the three flours were thoroughly blended (Fig. 6)

Subscription Structure Str

#### Approximation using NutriSurvey software





Fig 5. Flowsheet for household-level methods of CF processing

### 2. Industrial-level Approach Extrusion cooking

- Processing of the raw materials into flours separately (Fig. 7)
- The flours blended into a composite flour at a ratio: of 70:20:10 for teff, soybean and OFSP, respectively
- Composite flour extruded into a complementary food
   ✓ Pilot scale twin-screw extruder
- Selected operating conditions (Literature, trial tests):
  - Feed moisture (22%), Barrel temperature (120 °C), Screw speed (225 rpm)
- Drying and milling of extrudates, packaging and storage of the flour (CF)



Fig 6. Flowsheet for extrusion cooking of the composite flour into CF

### Table 1. Developed complementary foods and their ingredients with proportions (%)

| ComF Formulation | Processing method       | Ingredients            | Proportion (%) |
|------------------|-------------------------|------------------------|----------------|
|                  |                         | Ungerminated teff      | 70             |
| ComF1            | Extrusion cooking       | Unprocessed soybean    | 20             |
|                  |                         | Processed sweet potato | 10             |
|                  |                         | Ungerminated teff      | 60             |
| ComF2            | Household-level methods | Germinated teff - 24 h | 10             |
|                  |                         | Blanched soybean       | 20             |
|                  |                         | Processed sweet potato | 10             |
|                  |                         | Ungerminated teff      | 60             |
| ComF3            | Household-level methods | Germinated teff - 24 h | 10             |
|                  |                         | Roasted soybean        | 20             |
|                  |                         | Processed sweet potato | 10             |
|                  |                         | Ungerminated teff      | 60             |
| ComF4            | Household-level methods | Germinated teff - 48 h | 10             |
|                  |                         | Blanched soybean       | 20             |
|                  |                         | Processed sweet potato | 10             |
|                  |                         | Ungerminated teff      | 60             |
| ComF5            | Household-level methods | Germinated teff - 48 h | 10             |
|                  |                         | Roasted soybean        | 20             |
|                  |                         | Processed sweet potato | 10             |

ComF— Complementary Food



### Ingredients and CFs analyzed for:

- β-Carotene (vitamin-A)
  - According to the method of Rodriguez-Amaya & Kimura (2004)
- Minerals: Calcium, Iron, Zinc
  - AOAC International (2000)
- Phytate
  - <sup>©</sup> Using the method of Camire & Clydesdale (1982)
- Bioavailability
  - Provide the second state of the second stat
  - Phytate:mineral molar ratio



#### Fig 8. Determination of $\beta$ -carotene

# **Results and Discussion**

#### Table 2. $\beta$ -Carotene ( $\mu$ g/g), minerals and phytate (mg/100 g) contents of ingredients (dmb)

| ComF            | Ingredient        | β-Carotene                | Calcium                | Iron                      | Zinc                     | Phytate                    |
|-----------------|-------------------|---------------------------|------------------------|---------------------------|--------------------------|----------------------------|
|                 | Ungerminated      | $2.59 \pm 0.21^{a}$       | $203.78 \pm 40.51^{a}$ | $15.93 \pm 2.12^{b}$      | $5.83 \pm 0.87^{b}$      | $336.34 \pm 37.54^{\circ}$ |
| Teff            | Germinated – 24 h | $4.18\pm0.27^{a}$         | $182.47 \pm 0.78^{a}$  | $42.19\pm7.97^{\rm d}$    | $5.79\pm0.15^{\text{b}}$ | $20.77 \pm 13.33^{a}$      |
|                 | Germinated – 48 h | $6.54\pm0.26^{b}$         | $190.12 \pm 0.88^{a}$  | $32.61 \pm 1.28^{\circ}$  | $5.93\pm0.08^{\text{b}}$ | $33.51 \pm 3.79^{a}$       |
|                 | Unprocessed       | $10.60 \pm 0.45^{\circ}$  | $195.59 \pm 40.44^{a}$ | 8.47 ± 1.11 <sup>ab</sup> | $5.72 \pm 3.20^{b}$      | $221.86 \pm 33.28^{b}$     |
| Soybean         | Blanched          | $14.62\pm0.57^{\text{d}}$ | 392.48 ± 1.74°         | $7.02\pm0.15^{\rm a}$     | $5.94\pm0.09^{b}$        | $25.14\pm6.12^{\rm a}$     |
|                 | Roasted           | $12.09 \pm 1.87^{\circ}$  | $289.52 \pm 2.42^{b}$  | $7.17\pm0.12^{ab}$        | $5.28\pm0.28^{ab}$       | $30.50\pm2.09^{a}$         |
| Sweet potato    | Processed         | $45.08 \pm 0.43^{e}$      | $219.18 \pm 4.60^{a}$  | $4.23\pm0.37^{a}$         | $2.13\pm0.24^{a}$        | $28.53\pm3.26^a$           |
| <i>P</i> -value |                   | < 0.001                   | < 0.001                | < 0.001                   | 0.023                    | < 0.001                    |

#### Table 3. Vitamin A ( $\mu$ g RE/100 g), calcium, iron, zinc and phytate (mg/100 g) contents of CFs (dmb)

| Formulation                      |         | Vitamin A               | Calcium                    | Iron                  | Zinc                       | Phytate                |
|----------------------------------|---------|-------------------------|----------------------------|-----------------------|----------------------------|------------------------|
| Control                          |         | $141.70 \pm 1.42^{b}$   | $203.61 \pm 36.19^{a}$     | $13.24 \pm 1.43^{bc}$ | $5.12\pm1.03^{a}$          | $300.23 \pm 33.29^{b}$ |
| ComF1                            |         | $91.89 \pm 1.80^{a}$    | $229.86 \pm 28.11^{a}$     | $19.42 \pm 0.17^{c}$  | $5.25\pm0.35^{a}$          | $36.70\pm7.87^{a}$     |
| ComF2                            |         | $157.03\pm2.01^{b}$     | $240.93 \pm 24.78^{a}$     | $15.60 \pm 1.84^{b}$  | $5.48\pm0.50^{a}$          | $238.93 \pm 26.40^{b}$ |
| ComF3                            |         | $148.55\pm8.03^{b}$     | $220.34\pm25.30^{a}$       | $10.75\pm1.72^{a}$    | $5.34\pm0.49^{a}$          | $240.00 \pm 26.23^{b}$ |
| ComF4                            |         | $160.97\pm2.84^{b}$     | $241.69 \pm 24.78^{\rm a}$ | $14.65\pm1.32^{b}$    | $5.49\pm0.51^{a}$          | $240.21 \pm 26.21^{b}$ |
| ComF5                            |         | $152.48 \pm 8.90^{b}$   | $221.10 \pm 25.29^{a}$     | $8.83\pm0.34^{a}$     | $5.36\pm0.51^a$            | $241.28 \pm 25.99^{b}$ |
| <i>P</i> -value                  |         | < 0.001                 | 0.748                      | < 0.001               | 0.967                      | < 0.001                |
| Reference value (/ 100g)         |         | 831 <sup>α</sup>        | 340 <sup>α</sup>           | 9.4 <sup>α</sup>      | <b>4</b> .1 <sup>€</sup>   | NA                     |
| Reference value (Intake per day) | BM + CF | 400 <sup><i>π</i></sup> | 400 <sup>€</sup>           | 9.3 <sup>π, β</sup>   | 3.0 <sup><i>π</i>, μ</sup> | NA                     |
|                                  | From CF | 63 <sup>π</sup>         | 209                        | 9.1 <sup>π,β</sup>    | 2.4 <sup>π, μ</sup>        | NA                     |

α World Food Programme, 2014); <sup>€</sup> FAO/WHO, 2004); <sup>π</sup> Dewey (2005)
 <sup>β</sup> Medium bioavailability (10%), <sup>µ</sup>Moderate bioavailability (30%)
 NA - Not Applicable; BM - Breast Milk; CF - Complementary Food

#### Table 4. Phytate:mineral molar ratios for calcium, iron and zinc of the CFs

| ComF Formulation             | Phytate:Calcium     | Phytate:Iron        | Phytate:Zinc        |
|------------------------------|---------------------|---------------------|---------------------|
| ComF1                        | $0.01 \pm 0.00^{a}$ | $0.20 \pm 0.02^{a}$ | $0.87 \pm 0.07^{a}$ |
| ComF2                        | $0.06\pm0.01^{b}$   | $1.31\pm0.14^{b}$   | $4.32\pm0.67^{b}$   |
| ComF3                        | $0.07\pm0.01^{b}$   | $1.90 \pm 0.14^{c}$ | $4.45\pm0.71^{b}$   |
| ComF4                        | $0.06\pm0.01^{b}$   | $1.39\pm0.15^{b}$   | $4.33\pm0.68^{b}$   |
| ComF5                        | $0.07\pm0.01^{b}$   | $2.31 \pm 0.16^{d}$ | $4.47\pm0.71^{b}$   |
| <i>P</i> -value              | 0.004               | < 0.001             | < 0.001             |
| <sup>¥</sup> Reference value | 0.24                | 1.0                 | 15.0                |

\*Maximum limits for phytate:mineral molar ratios in plant-based CFs (Norhaizan and Nor Faizadatul Ain, 2009)

# **Conclusion**

Complementary foods produced from teff-soybean-OFSP mixture can meet the requirements of V-A, Ca, Fe and Zn for 6 to 8 month-old infants

⇒It can also support the various initiatives being carried out in lowincome countries to reduce MNM problems including VAD

⇒The bioavailability of the minerals should be checked in vivo for checking true absorption

# **Acknowledgement**









# "Accelerating OFSP Value Chain Development for Nutrition and Livelihoods"!



### Why Teff, Soybean, OFSP?

### <u>Teff</u>

- Staple crop for Ethiopia----highly valued
- Excellent nutrient profile: essential amino acids, fiber, iron, calcium, potassium
   + more
- Red teff has the highest iron content
- Becoming a functional food nowadays!

### <u>Soybean</u>

- High protein content, well-balanced amino acid pattern, high fat content
- Complements the protein of cereals quantity + quality
  - Rich in lysine and tryptophan
- Promoted for improving food security problems

### Sweet potato (OFSP)

- Produced in large quantity but the white variety
- OFSP is highly promoted to prevent VAD
  - Excellent source of beta carotene







## **Extrusion cooking**

- High temperature short time process
- Multi-step, multifunctional, thermal process
- Recommended for infant foods processing
- Benefits include:
  - Destruction of antinutritional factors,
  - Gelatinization of starch thereby reducing viscosity
  - Increased soluble dietary fibre
  - Reduction of lipid oxidation
  - Significant nutrient retention
  - Improved protein digestibility
  - Improved sensory properties
  - Instant/ready-to-eat CF (short preparation time)

# **Combined household Methods**

### • Blanching:

- For destroying lipoxygenase and peroxidase enzymes that causes beany flavor in soybean and other antinutritional factors
- This prevents browning, lipid oxidation and other degenerative reactions which can affect the  $\beta$ -carotene
- Roasting:
  - Removal of volatile substances including hexanal (grassy smelling substances)
  - Onset of Maillard reaction
    - Gives attractive flavor
  - Inactivates trypsin inhibitors
- Germination:
  - Activates or produces endogenous enzymes including phytases
  - Reduces viscosity and dietary bulk (liquefaction effect)
  - Increased availability of amino acids including lysine, tryptophan and methionine
  - Degradation of antinutritional factors
  - Increased availability of minerals and vitamins

# Why Teff, Soybean, OFSP

• Teff

- A significant crop in only one country in the world- Ethiopia
- Probably the tiniest grain on the planet
- Excellent source of essential amino acids, especially lysine
- an excellent source of fiber and iron, and has many times the amount of calcium, potassium and other essential minerals found in an equal amount of other grains
- gluten-free, and is gaining popularity in the whole food and Health food industry
- Red teff has the highest iron content
  - Iron content = 11.5 150 mg/100 g

| -                         | Teff | Maize | Sorghum | Wheat | Rice |
|---------------------------|------|-------|---------|-------|------|
| Energy (kcal)             | 357  | 375   | 370     | 359   | 357  |
| Starch (%)                | 73   | 72    | 63      | 71    | 64   |
| Crude protein (%)         | 11   | 8-11  | 8.3     | 11.7  | 7.3  |
| Amino acid (g / 16 g N)   |      |       |         |       |      |
| Lysine                    | 3.7  |       | 0.3     | 2.1   | 3.7  |
| Isoleucine                | 4.1  |       | 0.7     | 3.7   | 4.5  |
| Leucine                   | 8.5  |       | 2.1     | 7.0   | 8.2  |
| Valine                    | 5.5  |       | 0.8     | 4.1   | 6.0  |
| Phenylalanine             | 5.7  |       | 0.9     | 4.9   | 5.5  |
| Tyrosine                  | 3.8  |       | 0.7     | 2.3   | 5.2  |
| Tryptophan                | 1.3  |       | 0.2     | 1.1   | 1.2  |
| Threonine                 | 4.3  |       | 0.5     | 2.7   | 3.7  |
| Histidine                 | 3.2  |       | 0.4     | 2.1   | 2.3  |
| Arginine                  | 5.2  |       | 0.6     | 3.5   | 8.5  |
| Methionine                | 4.1  |       | 0.3     | 1.5   | 2.7  |
| Cystine                   | 2.5  |       | 0.3     | 2.4   | 1.8  |
| Asparagine                | 6.4  |       |         | 5.1   | 9.0  |
| Serine                    | 4.1  |       | 0.8     | 5.0   | 5.0  |
| Glutamine + Glutamic Acid | 21.8 |       |         | 29.5  | 17.0 |
| Proline                   | 8.2  |       | 1.3     | 10.2  | 5.0  |
| Glycine                   | 3.1  |       | 0.5     | 4.0   | 4.5  |
| Alanine                   | 10.1 |       | 1.6     | 3.6   | 5.5  |

#### Teff compared to other cereals

- Teff's amino acid composition is well-balanced
- A relatively <u>high concentration of lysine</u>, a major limiting amino acid in cereals, is found in teff.
- Similarly, compared to other cereals, higher contents of isoleucine, leucine, valine, tyrosine, threonine, methionine, phenylalanine, arginine, alanine, and histidine are found in teff

Table 3.2—Mineral content of teff grain compared to other cereals, mg/100g

| Minerals | White teff | Red teff   | Mixed teff | Maize   | Sorghum | Wheat     | Rice |
|----------|------------|------------|------------|---------|---------|-----------|------|
| Iron     | 9.5-37.7   | 11.6- >150 | 11.5- >150 | 3.6-4.8 | 3.5-4.1 | 3.7       | 1.5  |
| Zinc     | 2.4-6.8    | 2.3-6.7    | 3.8-3.9    | 2.6-4.6 | 1.4-1.7 | 1.7       | 2.2  |
| Calcium  | 17-124     | 18-178     | 78.8-147   | 16      | 5.0-5.8 | 15.2-39.5 | 23   |
| Copper   | 2.5-5.3    | 1.1-3.6    | 1.6        | 1.3     | 0.41    | 0.23      | 0.16 |

Sources: Abebe et al. 2007; Baye et al. 2014; Gebremariam et al. 2012; Kebede 2009; USDA/ARS 2014.

# <u>Soybean</u>

- high protein content and well-balanced amino acid pattern
- a valuable protein source in the human diet
- Protein content is approximately 40% and fat 20% with considerable variations depending on the cultivars.
- Protease inhibitors have a harmful effect on the digestion of soy protein

# **Orange-Fleshed Sweet Potato**

- β-carotene-rich
- More than 80% of total carotenoids is  $\beta$ -carotene.
- Bechoff (2010) reported that blanching inactivates enzymes that degrade provitamin A such as lipoxygenases and peroxidases and thereby prevent browning, lipid oxidation and other degenerative reactions which can affect β-carotene

- Development of complementary foods is guided by:
  - high nutritional value to supplement breastfeeding,
  - acceptability,
  - low price,
  - use of local food items



### <u>Global hidden hunger map:</u>

#### Micronutrients (vitamins and minerals)

are essential for many functions and health



They cannot be produced by the body and have to come from the diet