Research Article Open Access

Maria I. Andrade*, Godwill S. Makunde, Jose Ricardo, Joana Menomussanga, Abilio Alvaro and Wolfgang J. Gruneberg

Survival of sweetpotato (*Ipomoea batatas* [L] Lam) vines in cultivars subjected to long dry spells after the growing season in Mozambique

DOI 10.1515/opag-2017-0006

Received November 21, 2016; accepted February 2, 2017

Abstract: Optimisation of sweetpotato production potential is not realized in sub-Saharan Africa where dry spells are common after the growing season. Lack of seed cultivars at the beginning of the rainy season is the challenge and identifying those cultivars with the ability to survive a 4 to 7-month dry spell is an important objective in these regions. To this end, the purpose of the present study was to estimate survival of vines of different cultivars under drought stress. Three harvesting times set as 5, 9 and 11 months after planting were established at Umbeluzi, Nwallate and Gurue in 2015. For each harvesting time, 37 clones were evaluated in a randomized complete block design with two replications. Data collected on yield, vine length and number of sprouts were analysed using SAS 1996. Resisto had long stems but no vines after 9 months at any of the sites. The ability of some clones to reach 9 months and 11 months with few vines at Umbeluzi and Nwallate offer sources of planting material for the subsequent season. Sprouting had broad sense heritability above 50%. Sprouting is known to be an important aspect of cultivar survival. While we show that vine length and thickness could be traits responsible for sweet potato drought tolerance

Keywords: plant morphology, photosynthates, sweetpotato, sprouting, biomass

E-mail: M.Andrade@cgiar.org

Godwill S. Makunde, Joana Menomussanga, Abilio Alvaro, International Potato Center, Av. FPLM 2698, Maputo, Mozambique

Jose Ricardo, Instituto de Investigação Agraria de Mozambique, Av. FPLM 2698, Maputo, Mozambique

Wolfgang J. Gruneberg, International Potato Center, Av. La Molina 1895, Lima Perú

© 2017 Maria I. Andrade et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution 3.0 Public License.

1 Introduction

A number of factors limit sweetpotato productivity in the world, considering that the majority of the producers are smallholder farmers. One of the greatest challenges is obtaining seed material at the beginning of the planting season especially in Southern Africa where rainfall is unimodal and the gap between dry and wet season may be as long as 5 to 8 months (Barker et al. 2012). In this region, the majority of smallholder farmers use farmsaved, vegetatively propagated seed (Gibson et al. 2009). A study by Labarta (2008) in six villages in Mozambique demonstrated the difficulty of conserving planting material by smallholder farmers. Only 37% of the farmers that had received vines of orange-fleshed sweetpotato in two previous seasons managed to retain them for planting in 2008. Scarcity of surviving varieties also affects farmers' choices (Kapinga et al. 1995).

The long dry spells experienced in Southern Africa after the main crop growing season have a negative impact on conservation of sweetpotato vines and timely re-supply at the beginning of the rainy season (Barker et al. 2012). Innovative measures need to be put in place to allow farmers to obtain planting material at the right time early in the rainy season. One way is by conserving and multiplying vines near water bodies such as dams, perennial rivers and boreholes. Major constraints associated with this policy include (i) lack of water bodies in all areas and (ii) high competition for water during the dry season by people, animals and other high value horticultural crops which serve as food sources at this critical time (Gibson et al. 2011). Sweet potato varieties which put out vines which can survive through the dry period or viable options of root storage offer easier ways of ensuring that farmers get planting material on time. The single most important improvement to sweetpotato seed production is generating an abundance of appropriate plant material

^{*}Corresponding author: Maria I. Andrade, International Potato Center, Av. FPLM 2698, Maputo, Mozambique,

which can be made available for planting at the beginning of the rainy season (Gibson *et al.* 2009).

Little has been done to study the heritability of vine survival of sweetpotato cultivars exposed to prolonged dry spells after the growing season. To unlock the role of sweetpotato in food security and livelihood improvement, studies in vine survival are important (Mwinje *et al.* 2014). The objectives of this study were to estimate survival of vines of different sweet potato clones under drought stress and document their root-sprouting abilities after four months of storage.

2 Materials and methods

A total of 37 genotypes were evaluated for heritability of vine survival (Table 1).

Each of Three treatments was a different harvesting time; 5, 9 and 11 months after planting at 3 sites: Umbeluzi, Nwallate and Gurue in February 2015. A single row 4 m long was assigned to each genotype, organized as a randomised block design with two replications. A row-to-row distance of 0.9 m and a plant-to-plant spacing of 0.3 m was maintained. Data on storage root yield, vine yield, vine length, petiole length and stem diameter were recorded. After the first harvest at 5-months 10 small and medium

sized roots were selected from Umbeluzi and Nwalate and stored in dry sand at Nwalate. Five of the stored roots were drawn in November 2015 and planted in a seed nursery for sprouting. Data on the number of sprouts at 2 and 3 weeks and length of the vines at 5 weeks, vine yield and length at 5 months were recorded. The collected data were analysed using SAS 1996.

3 Results

A combined analysis of morphological data (vine length, number of branches per plant, petiole length and stem diameter) measured at 90 days after planting across the three sites showed differences among genotypes. The means for these traits are presented in Table 2. Variation of vine length ranged between 68.07 cm to 175.80 cm while number of branches per plant was between 6 and 15.

Storage root and vine yield recorded at 5, 9 and 11 months after planting differed widely among genotypes. Table 3 shows the means for the two traits across Umbeluzi, Nwalate and Gurue Research Stations. The population means for storage root yield decreased from 31.86 t/ha at 5 months after planting to 15.86 t/ha at 11 months after planting. The most sensitive genotypes were Resisto and Nhacoongo 1.

Table 1: List of germplasm evaluated for the heritability of vine survival trait

No.	Genotype	Merit	No.	Genotype	Merit
1	Xitsekele	Local cultivar	20	Japon	Foreign
2	Namanga	Released in 2011	21	Nhacoongo 1	Local cultivar
3	Cordner	Foreign	22	Chissicuana 2	Local cultivar
4	Lourdes	Released in 2011	23	Caromex	Local cultivar
5	Melinda	Released in 2011	24	NASPOT	Foreign
5	Irene	Released in 2011	25	NASPOT 5	Foreign
7	Delvia	Released in 2011	26	SPK-004	Foreign
3	Ininda	Released in 2011	27	Resisto Moz	Check
)	Amelia	Released in 2011	28	Nhacutse 1	Local cultivar
10	Xiadla-xau	Local cultivar	29	Jonathan Moz	Check
1	Jane	Released in 2011	30	Lo323	Foreign
2	Gloria	Released in 2011	31	Tacna	Foreign
13	Esther	Released in 2011	32	MGCL01	Foreign
14	Mwazambane	Local cultivar	33	5 houras	Local landrace
15	Lawrence	Released in 2016	34	Chingova	Foreign
6	Bita	Released in 2016	35	Caelan	Released in 2016
.7	Alisha	Released in 2016	36	MUSG11016-1	Released in 2016
.8	Bie	Released in 2016	37	Victoria	Released in 2016
19	lvone	Released in 2016			

The number of sprouts per root and vine length also differed widely among genotypes. Table 4 shows the genotypic means for the traits measured for the sprouting experiments. Bita and Bie had the longest and shortest vines respectively at 5 weeks after sprouting. The number of sprouts per root increased with the number of days.

Broad sense heritabilities for some of the measured traits ranged from 28.67 to 84.48% (Table 5).

Table 2: Genotypic means for vine length (cm), number of branches per plant, petiole length (cm) and stem diameter (mm) measured at 90 days after planting of analysed data across Umbeluzi, Nwalate and Gurue Research Stations in 2015

Genotype	Vine length (cm)	No. Of branches	Petiole length (cm)	Stem diameter (mm)
Caelan	175.80	6.73	21.63	5.8
(iada-xikau	156.73	8.60	19.53	6.9
Alisha	155.77	5.40	20.90	6.3
MGCLO1	155.53	11.22	14.81	5.3
Resisto	152.15	5.77	12.00	2.8
Kitsekele	150.05	11.23	14.28	5.6
Bita	135.87	8.83	22.87	6.7
acna	134.60	13.50	19.53	7.2
Horas	133.03	6.22	18.06	6.7
lhacoongo 1	124.54	15.00	16.27	3.1
Glória	120.40	9.90	21.10	6.1
Melinda	119.33	10.00	17.10	5.4
Delvia	116.12	10.63	21.17	6.0
Chissicuana 3	113.53	8.00	16.93	7.3
lhacutse 1	110.45	11.41	17.47	5.5
/one	109.67	13.93	17.43	4.5
'ictoria	107.33	7.50	17.87	6.5
onathan	101.37	9.72	16.40	7.3
awrence	100.80	7.70	18.13	6.2
Amelia	97.43	8.70	20.03	6.4
ourdes	96.30	8.90	14.73	6.6
laspot 5	90.73	9.53	22.00	6.1
Chissicuana 2	90.51	10.33	15.35	7.3
lamanga	87.87	9.57	15.38	4.2
ane	87.08	11.68	19.60	6.2
Nwazambane	86.82	9.65	16.13	5.3
sther	86.70	6.50	11.97	5.1
apon	85.47	10.60	17.17	6.1
Bie	84.87	6.77	19.50	6.7
.0 323	80.33	7.77	17.63	7.1
laspot	79.63	8.57	16.77	6.5
SPK 004	79.30	11.40	20.26	5.2
rene	75.17	12.70	16.30	5.4
ninda	71.40	11.27	20.43	5.2
MGSG 11016-1	71.13	7.63	15.97	7.0
Chingova	68.07	9.37	19.13	6.2
Mean	108.11	9.51	17.83	5.94

Table 3: Genotypic means for storage root yield (t/ha) and vine yield (t/ha) across Umbeluzi, Nwalate and Gurue in 2015

	RYTHa	RYTHa	RYTHa	Vine yield	Vine yield	Vine yield
Genotype	5months	9 months	11 months	5months	9months	11months
Namanga	19.75	22.73	24.05	28.83	16.65	4.93
Lourdes	17.23	17.60	23.13	31.35	24.63	16.04
Ininda	20.93	20.23	23.28	49.48	31.30	17.27
Irene	26.35	30.85	43.02	30.10	22.88	20.82
Delvia	26.83	31.30	22.39	30.83	17.68	18.97
Melinda	22.19	19.28	18.50	31.51	37.00	22.38
Amelia	11.63	14.39	18.18	41.21	18.57	17.95
Jane	9.80	20.63	7.40	38.30	21.05	6.11
Gloria	13.80	17.38	5.28	38.53	24.05	12.95
Esther	8.00	11.93	12.20	23.70	10.00	2.22
NASPOT	10.00	17.15	11.96	9.40	12.90	8.20
Japon	17.68	21.13	24.79	20.25	22.88	6.13
Nhacoongo 1	11.49	4.39	0.00	30.88	35.13	0.00
Chissicuana 2	27.28	29.65	29.48	29.28	14.35	18.63
Xitsekele	11.13	19.38	28.49	32.55	34.48	23.45
NASPOT 5	17.28	17.68	26.73	26.90	17.93	12.60
Mwazambane	15.18	20.33	29.39	29.25	31.28	22.33
TACNA	17.05	25.75	21.45	49.58	30.73	13.94
SPK-004	24.04	20.88	20.63	41.90	37.18	26.37
Resisto	12.05	17.60	2.30	15.13	12.38	0.00
Chingova	21.35	23.05	20.99	24.50	18.43	18.53
Bie	19.13	21.68	12.03	41.85	19.98	23.24
Jonathan	23.91	13.74	8.48	44.02	21.43	21.46
Nhacutse 1	16.24	16.08	3.70	42.76	23.20	3.70
L0323	24.28	23.53	13.05	27.23	16.68	11.38
Xiada-xikau	12.78	11.35	16.81	40.30	27.03	39.02
MGCL01	6.43	6.80	16.56	22.23	37.48	24.15
Bita	17.53	33.45	26.01	44.78	28.78	14.93
Chissicuana 3	13.93	20.65	27.75	23.83	16.65	17.07
5 Horas	13.33	19.80	18.81	37.18	18.23	18.75
Caelan	17.33	26.63	17.02	32.53	31.85	8.24
MGSG11016-1	17.25	26.93	10.42	14.13	18.80	2.99
Victoria	12.33	19.73	13.61	22.20	15.03	12.27
Lawrence	9.24	8.60	29.90	29.52	21.68	14.30
Alisha	25.80	34.80	18.81	32.85	18.20	11.10
lvone	21.31	28.54	42.09	37.99	19.50	27.75
Mean	17.00	20.43	19.13	31.86	22.94	15.84

RYTHa: storage root yield (t/há)

62 — M.I. Andrade, et al. DE GRUYTER OPEN

Table 4: Results of the sprouting experiments at Umbeluzi, Nwalate and Gurue Research Stations in 2015 with number of sprouts during the second and third week as well as vine length at 5 weeks recorded. Vine length and yield were estimated as well at five months after the first sprouting date

	Vine length (cm)	Vine length (cm)	No. Of sprouts	No. Of Spro	uts Vine yield (t/há)
Genotype	5 weeks	5 months	2 weeks	3 weeks	5 months
Bita	126.82	208.88	9.89	11.13	45.57
Alisha	107.20	182.25	7.09	9.41	43.17
Xiada-xikau	101.13	165.00	8.33	8.09	47.17
TACNA	95.57	146.25	8.41	9.13	45.75
Mwazambane	94.18	97.00	6.71	7.38	30.99
Xitsekele	90.00	153.75	4.33	4.92	36.69
Chissicuana 3	87.15	118.25	5.75	6.75	33.45
Caelan	85.75	188.25	9.46	10.63	34.07
5 houras	81.83	147.00	8.04	8.12	41.30
Jonathan	76.55	119.75	3.42	3.58	25.29
lvone	76.28	127.75	8.50	10.59	44.40
Nhacoongo 1	71.18	146.25	2.00	3.25	14.86
Victoria	70.28	126.00	4.75	7.50	38.23
Chingova	69.75	76.00	6.17	7.00	41.63
Ininda	69.38	89.00	7.67	7.33	49.95
NASPOT	62.93	94.75	5.24	8.91	44.17
Chissicuana 2	60.75	106.75	7.50	9.00	25.29
Irene	58.18	87.75	4.79	7.75	48.72
Delvia	56.80	124.50	9.50	12.42	45.02
Namanga	55.88	104.00	2.88	5.88	27.13
Lourdes	55.80	97.00	2.67	5.58	23.74
Melinda	55.67	150.25	4.03	5.93	26.08
NASPOT 5	53.50	107.00	7.17	8.84	36.08
Japon	53.50	96.50	6.50	8.29	30.06
Nhacutse 1	50.32	118.00	1.91	3.13	19.06
MGCL01	49.61	169.50	1.58	4.43	23.68
Lawrence	49.13	131.25	7.00	8.42	33.30
MGSG11016-1	46.08	78.50	4.92	6.25	33.15
Gloria	45.55	144.00	8.17	9.41	37.62
Cordner	44.55	82.50	3.42	4.58	26.91
Caromex	43.45	109.50	7.21	8.33	46.56
Jane	42.25	98.75	7.92	11.34	26.08
Lo323	38.92	96.75	9.75	9.92	39.47
SPK-004	28.57	94.75	6.89	9.78	40.57
Amelia	20.82	115.50	3.36	4.54	40.02
Resisto	19.08	146.25	0.50	2.71	12.18
Bie	5.82	69.38	4.58	7.38	9.81
Mean	62.17	122.01	5.89	7.50	34.25

Esther was excluded from the analysis due to rotten root samples

Table 5: Broad sense heritabilities for the measured traits across Umbeluzi, Nwalate and Gurue Research Stations in 2015

Trait	Broad-sense heritability (h2) (%)
Leaf size (cm)	84.48
Petiole length (cm)	79.08
Number of branches	68.54
Vine length (cm)	56.62
Number of sprouts at 3 weeks	56.42
Foliage biomass (kg/ha) at 9 months	39.49
Storage root yield (kg/ha) at 9 months	28.67

4 Discussion

The current study demonstrated the variation in vine survival that can occur among genotypes based on vine yield at 9 and 11 months after planting. The leaf canopy for Nhacoongo 1 and Resisto failed before 11 months. Resisto has previously been described as drought sensitive (Laurie et al. 2009). Contrary to Nhacoongo 1 and Resisto, there was another group of genotypes that had high vine yield at 11 months: Irene, Melinda, Xitsekele, MGCL01, Ivone and Xiadla-xikau. Previous reports indicated that MGCL01 (Persistente) was the most drought resistant OFSP variety in Zambezia Province (Barker et al. 2012).

Seeds are nature's answer to surviving adverse conditions, such as prolonged dry seasons. All the genotypes tested here sprouted, though at different rates. By five weeks after sprouting Bita, Alisha, Xiadla-xikau, Tacna, Mwazambane and Xitsekele had vine length enough to provide more than 8 cuttings for rapid multiplication. Other cultivars such as Irene, Ininda and Delvia also had long vines ready for cutting. The abundance of foliar cuttings on a sweetpotato allows wider distribution. The number of branches per plant is important in biomass production and Uganda farmers actually grow some varieties because of the amounts of vines they produce (Okonya et al. 2014). This could be the reason why most of the landraces are popular among farming communities despite their low storage root yield. Bie is a difficult variety to multiply even under field conditions (Maria Andrade

personal communication). It is not surprising that it had smallest vines five weeks after sprouting.

Some traits such as vine length and other morphological traits measured contribute to vine survival and have high heritability. Vine length and stem diameter are key to vine survival. Resisto and Nhacoongo 1 had average stem diameter of 2.8 and 3.1 mm respectively, making them the thinnest cultivars in the study and their vines could not survive upto 11 months. These two genotypes are spreading with thin stems. Cultivars with Erect (short) and thick stems had a better survival rate during prolonged dry spells.

Acknowledgements: The authors thank the Bill & Melinda Gates Foundation for the financial support of this study through the SASHA project in Mozambique, AGRA, Rockefeller Foundation and USAID.

Reference

Barker, I., Andrade, M., Labarta, R., Mwanga, R., Kapinga, R., Fuentes, S., Low, J., Sustainable Seed Systems. International Potato Center (CIP), Lima, Peru. Integrated Crop Management Working Paper, 2012, 2009-1

Gibson, R., Mwanga, R.O.M., Namanda, S., Jeremiah, S.C., Barker, I., Review of sweetpotato seed systems in East and Southern Africa. International Potato Center (CIP), Lima, Peru. Integrated Crop Management Working Paper, 2009, 2009-1.48p.

Kapinga R., Ewell P., Jeremiah S., Kileo R., Sweetpotato in Tanzania Farming and food system. Implications for Research. Working paper for International Potato Center (CIP), Nairobi, Kenya and Ministry of Agriculture, Dar es Salaam, Tanzania, 1995, p. 47

Gibson R., Namanda S., Kirimi S., Sweetpotato Seed Systems in Uganda, Tanzania and Rwanda. Journal of Sustainable Agriculture, 2011, 35:870-884

Mwinje A., Mukasa S.B., Gibson P., Kyamanywa S., Heritability analysis of putative drought adaptation traits in sweetpotato. African Crop Science, 2014, 22: 79-87

Laurie R.N., Plooy C.P., Laurie S.M., Effect of moisture stress on growth and performance of orange - fleshed sweetpotato varieties. Science Horticulture, 2009, 102: 15-27

Okonya J.S., Kroschel J., Gender differences in access and use of selected productive resources among sweetpotato farmers in Uganda. Agriculture and Food Security, 2014, 3:1-10