Storage of fresh sweetpotato roots to reduce puree supply chain risks

Tanya Stathers¹, Penina Muoki², Bethwell Kipkoech³, Benard Otieno³, Jan Low⁴, Tawanda Muzhingi⁴, Andy Marchant¹, Debbie Rees¹

¹Natural Resources Institute (NRI), University of Greenwich, UK. Contact: t.e.stathers@gre.ac.uk
²International Potato Centre (CIP), Kisumu Office, Kenya. Contact: p.muoki@cgiar.org
³CIP OFSP processing intern based at Organi Ltd., Kabondo Kasipul sub-county, Nyanza, Kenya.
⁴International Potato Centre (CIP), Nairobi Office, Kenya. Contact: j.low@cgiar.org

Presented at the SPHI meeting – Dar es Salaam, Tanzania, 25-26 September 2017
Objectives

• To maintain the quality of fresh sweetpotato roots for processing into puree during a four month storage period in a commercial-sized store in a tropical area of sub-Saharan Africa

• To determine if the quality of stored fresh sweetpotato roots is affected by:
 – washing of the roots prior to storage;
 – variety;
 – or solar as opposed to mains power supply of the store
A large Kenyan supermarket chain is using orange-fleshed sweetpotato puree in its bakeries to produce a vitamin A rich bread which urban consumers enjoy.

To maintain such market opportunities, the processors need to provide a year-round supply of high quality OFSP puree.

To do this, they require fresh OFSP roots. However, sweetpotato production is rain-fed, and there are gluts and shortages in the root supply during the year and associated price fluctuations.

Could storage of fresh roots help overcome this challenge?
Approach – Treatments and set-up (1/4)

Variety:
- Kabode
 - Washed (A)
 - Dry manual (B)
- Vita
 - Washed (C)
 - Dry manual (D)

Soil removal:
- Washed (A)
- Dry manual (B)
- Washed (C)
- Dry manual (D)

Store room energy source:
- Solar: 15 boxes
- Mains: 15 boxes

Storage duration: 0, 2, 4, 6, 8, 13, 16 weeks

LTS4 trial set up on 13&14 Dec 2016; ~35-40 kgs roots per crate
NB: Limited Vita roots hence fewer crates
Approach – Root curing (2/4)

- Sweetpotato roots retain the ability to heal wounds after harvest.
- To “cure” roots at start of storage are exposed to high humidity so that wounds do not dry out, and warm temperatures so that roots can actively metabolise.
- The wound-healing process involves the synthesis of a layer of lignin to provide a barrier to water loss and entry of rotting pathogens, followed by the synthesis of a new periderm (skin) underneath this.

1. Uncertainty over curing period required
2. Wanted to compare external and internal signs
3. ~12 roots per trt had small areas of peel removed and were placed in stores
4. Each day we cut into the roots to see if the periderm had thickened or not
5. It took 5 days of curing at 30C & 95% rh for this to happen, although externally roots appeared to cure within 1-2 days.
6. Curing conditions were kept on for 5 days in stores and then active cooling started on 6th day (8am on 19/12/2016)
Approach – Experimental design

Sampling plan and calendar - LTS 4 (Dec 2016)

Store 1 - Solar powered

<table>
<thead>
<tr>
<th>Back wall</th>
<th>Top</th>
<th>Middle</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>B2</td>
<td>B22</td>
<td>A14</td>
<td>A3</td>
</tr>
<tr>
<td>D21</td>
<td>A32</td>
<td>A9</td>
<td>A21</td>
</tr>
<tr>
<td>C21</td>
<td>B8</td>
<td>A6</td>
<td>D9</td>
</tr>
<tr>
<td>D27</td>
<td>C8</td>
<td>C1</td>
<td>C2</td>
</tr>
<tr>
<td>B9</td>
<td>D7</td>
<td>A29</td>
<td>D3</td>
</tr>
<tr>
<td>B31</td>
<td>A26</td>
<td>D13</td>
<td>C23</td>
</tr>
<tr>
<td>D26</td>
<td>D2</td>
<td>A30</td>
<td>D25</td>
</tr>
<tr>
<td>C17</td>
<td>B25</td>
<td>A16</td>
<td>A17</td>
</tr>
<tr>
<td>D6</td>
<td>B12</td>
<td>D18</td>
<td>D11</td>
</tr>
<tr>
<td></td>
<td>B11</td>
<td>B7</td>
<td>C9</td>
</tr>
<tr>
<td></td>
<td>B23</td>
<td>C4</td>
<td>C12</td>
</tr>
<tr>
<td></td>
<td>B14</td>
<td>C19</td>
<td>C11</td>
</tr>
</tbody>
</table>

Door

Store 2 - Mains powered

<table>
<thead>
<tr>
<th>Back wall</th>
<th>Top</th>
<th>Middle</th>
<th>Bottom</th>
</tr>
</thead>
<tbody>
<tr>
<td>A15</td>
<td>D13</td>
<td>B19</td>
<td>B1</td>
</tr>
<tr>
<td>D12</td>
<td>A11</td>
<td>B6</td>
<td>A10</td>
</tr>
<tr>
<td>D22</td>
<td>C18</td>
<td>A12</td>
<td>A23</td>
</tr>
<tr>
<td></td>
<td>A19</td>
<td>C10</td>
<td>A8</td>
</tr>
<tr>
<td>A2</td>
<td>A33</td>
<td>D1</td>
<td>B3</td>
</tr>
<tr>
<td>D14</td>
<td>A20</td>
<td>B16</td>
<td>D17</td>
</tr>
<tr>
<td>B26</td>
<td>A1</td>
<td>C6</td>
<td>C24</td>
</tr>
<tr>
<td>B3</td>
<td>A5</td>
<td>C3</td>
<td>C15</td>
</tr>
<tr>
<td>A22</td>
<td>B19</td>
<td>A11</td>
<td>C13</td>
</tr>
<tr>
<td></td>
<td>B33</td>
<td>C5</td>
<td>D18</td>
</tr>
<tr>
<td>A4</td>
<td>B21</td>
<td>B5</td>
<td>B30</td>
</tr>
<tr>
<td>A31</td>
<td>B20</td>
<td>D20</td>
<td>C22</td>
</tr>
</tbody>
</table>

[Diagram of store 2 with labeled sections]
Approach – Sampling (4/4)

Raw root quality analysis

Each box weighed: roots counted, scored for general appearance, sponginess, shrivelling. Roots sorted, count and weigh of good quality and defective. The defective then counted and weighed 1st by surface damage, then by sprouted, then by weevil damaged, then by rotten. Portion of rotten and weevil roots needing discarding then cut out and weighed.

3 randomly selected roots of each treatment then vacuum packed and sent to FANEL for lab analysis (mc, Beta-carotene)

Simple quality analysis of puree

25 kgs roots/ treatment, washed, steamed, cooled, cut, pureed.

Sugar content (brix refractometer), puree stickiness, thickness, colour recorded. Puree sample sent to FANEL for betacarotene and bread making quality analysis
Findings (1/5)

After 6 weeks storage

After 4 months storage

Portion of roots needing discarding from puree chain after 4 months storage for this crate of Kabode (washed) roots
Findings (2/5)

Figure 1. USABLE and UNUSABLE PORTION of stored roots by storage duration, variety, soil removal treatment and store power sources at Organi Ltd., Dec 2016 to April 2017 (n=3)

- Fresh root storage can extend the time period for processing the roots into puree
- >70% of root weight could be processed into puree after 4 months storage in the solar powered store
- Larger portion of Kabode roots were discarded than Vita
- Root washing and store room power source did not greatly affect portion of roots requiring discarding
Findings (3/5)

Figure 2. Comparison of mean root GENERAL APPEARANCE SCORE per crate of sweetpotato roots stored for different durations using different treatments at Organi Ltd., Kenya (n=3).

- General appearance of Kabode dropped faster than that of Vita whether Washed or Unwashed
- By 4 months all general appearance scores had dropped to 4.5-5.5 as they no longer looked fresh, as some roots exhibited rots, weevil damage and sprouts
Findings (4/5)

- Weevil damage increased with storage time, despite 3 rounds of sorting to remove weevilled roots before setting up the trial. Presence of weevil damage was higher in the mains powered store.

- % of roots with sprouts increased with storage time. Washed Kabode roots had least sprouting
- Less rotting (not shown) occurred in the Vita than the Kabode roots
- % weight loss (not shown) was lower in Vita than Kabode
Trans beta-carotene content decreased rapidly in all treatments during the first 1 month of root storage, and then more slowly after that.
Discussion points

• Promising that >60% of Kabode root weight, and >80% of Vita root weight is fit for processing into puree after 4 months fresh root storage

• Quality of Vita stored roots was generally higher than Kabode

• Manual washing plus sun-drying of sweetpotato roots prior to curing and storage did not significantly affect root quality

• Despite very extensive sorting of roots prior to storage some weevils still developed in the roots

• The drop in trans beta-carotene content of the roots suggests enzymatic activity occurred under the current storage conditions

• In preliminary explorations, customers bought OFSP roots stored for 4 months highlighting fresh root marketing storage opportunities

• A solar-powered container store that can maintain 15°C has now been designed by the NRI engineer, we are about to set up a trial to see if weevil damage, rotting, sprouting and trans beta-carotene reduction are lower at lower temps

• Storage loss levels strongly affect the economics of root storage and this topic needs further investigation
Storage of fresh sweetpotato roots to reduce puree supply chain risks

Tanya Stathers¹, Penina Muoki², Bethwell Kipkoech³, Benard Otieno³, Jan Low⁴, Tawanda Muzhingi⁴, Andy Marchant¹, Debbie Rees¹

¹Natural Resources Institute (NRI), University of Greenwich, UK. Contact: t.e.stathers@gre.ac.uk
²International Potato Centre (CIP), Kisumu Office, Kenya. Contact: p.muoki@cgiar.org
³CIP OFSP processing intern based at Organi Ltd., Kabondo Kasipul sub-county, Nyanza, Kenya. Contact: j.low@cgiar.org
⁴International Potato Centre (CIP), Nairobi Office, Kenya. Contact: j.low@cgiar.org

Presented at the SPHI meeting – Dar es Salaam, Tanzania, 25-26 September 2017