Breeding for cold tolerance and dual purpose in the East African Highlands

Robert Mwanga, Benjamin Kivuva, Jean Ndirigwe, Damien Shumbusha, Benard Yada, Jan Low, Wolfgang Grüneberg

Building Resilient Food Systems with Sweetpotato

8th Annual SPHI Technical and Steering Committee Meeting, Dar es Salaam, Tanzania 24-26 September 2017

SWEETPOTATO ACTION FOR SECURITY AND HEALTH IN AFRICA

Outline of presentation

- Background on need for breeding for cold tolerance
- Objective
- Progress on breeding for cold tolerance

Background on breeding for cold tolerance

- Source of food, feed, and income
- Mixed crop-livestock systems by using vines as animal feed
- OFSP is important source of β-carotene
- Grown in varied agroecologies, 0-2,200 masl
- Dual-purpose SP varieties required in East African highlands, due to diminishing pasture land
- Sweetpotato forage improves milk production
- Aim at developing cold tolerant dual purpose varieties of vine/root ratio:1.5 3.0.

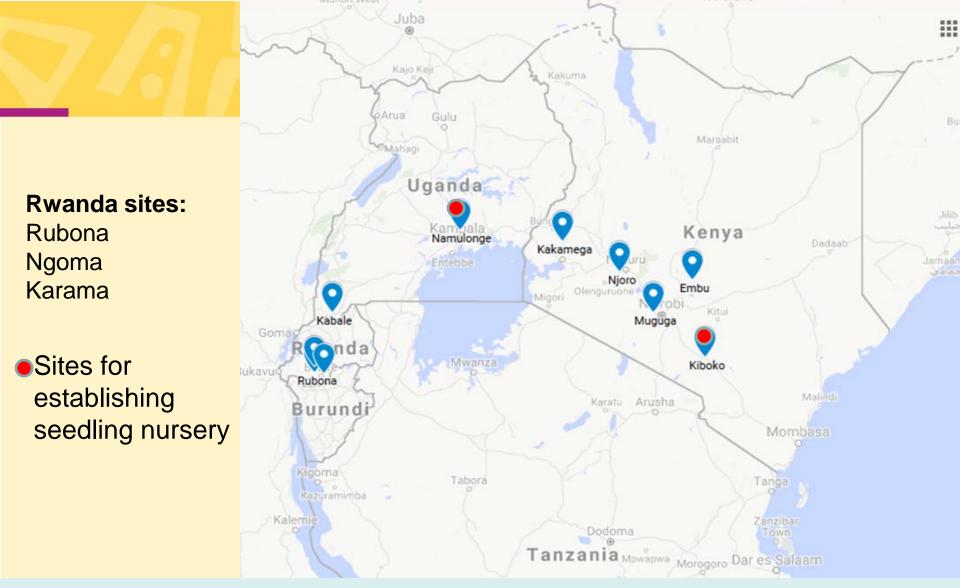
Objective

- Develop and release high yielding sweetpotato varieties
- for human consumption
- and for alternative uses, with emphasis on animal feed

Materials and methods

- 5,380 clones Observational trial at Rubona, Karama and Ngoma during 2011
- randomized complete block design (RCBD)
- Single row, 3 plants, 30 x 80 cm
- 2012 season A, 250 genotypes Preliminary trials Rubona, Karama and Ngoma
- 20 plants, 2-row plot, RCBD
- 25 clones Advanced trial advanced, 2-row plots, 3 Reps, RCBD
- On-farm trials (Participatory evaluation)
- 10 selected clones, nine sites located in five districts Huye, Nyamagabe, Muhanga, Bugesera and Ngoma
- Analysis of variance (ANOVA), GenStat
- Fisher's Protected Least Significance Difference test (LSD) at P = 0.05

Experimental materials



- Breeding populations (seed) were generated in crossing blocks at:
 a) Namulonge, Uganda, (80 x 50 parents) and sent to Kiboko, Kenya
 b) Rubona, Rwanda – 60 parents
- Seedling nurseries were established, Kiboko and Rubona

NKA

High altitude sites 1,400-1,810 masl for testing dual purpose sweetpotato

Table 4. Attributes of dual purpose s/potato cultivars released in Rwanda in Feb.2014 (C=cream; PY=pale yellow; W=white; L/I/DO=light/intermediate/dark orange

Attribute	RW11-17 (C)	RW11- 1860 (PY)				RW11- 4923(IO)	Check (Kwezikum we) (C)		
Mean storage root (SR) yield (t/ha)	12.9	9.8	11.8	13.4	8.3	9.1	6.9		
Mean SR yield (% of local check)	187	142	171	194.2	120.4	131.8	100		
Dry matter (DM) content of SR (%)	30.8	37.8	24.9	21	31.1	37.3	30		
DM content (%) of vines	17	20.7	17.6	20.6	18.3	19.2	18		
DM yield of roots (t/ha)	4	3.7	2.9	2.8	2.6	3.4	2.1		
DM yield of vines (t/ha)	4.1	4.8	3.4	2.7	3.9	4.4	2.6		
Fresh weight root to vine ratio	2	1.9	1.9	2	2	2	2.1		
Maturity (days)	135 - 150	120-135	135-150	120-135	120-135	135-150	120-135		
Taste test rank (n = 32; 19 female, 13 male farmers) ^z	Excellent	Excellent	Good	Good	Good	Very good	Very good		
^z Taste test rank/ aggregate pair-wise comparison of cultivars of taste, flavor, flesh									

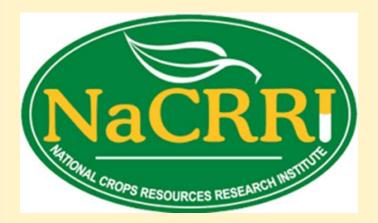
color, skin color, and general acceptability (Shumbusha et al. 2014)

Five dual purpose clones to enter into NPT evaluated for October 2017 in Kenya

ID	Genotype	Forage Yield t/ha	Root Yield tha	Forage/Root yield ratio	Mean Taste Score
1	SHOCK 5	48.1	20.0	2.4	8.0
2	KIGABALI 16	41.7	8.7	4.8	8.0
3	NASPOT II 13	40.5	8.3	4.9	7.0
4	KIGABALI 6	38.8	20.4	1.9	6.0
5	NASPOT II 2	31.5	24.5	1.3	6.0
6	MAGABALI 3	30.6	20.7	1.5	9.0
7	MAGABALI 1	30.4	18.5	1.6	5.0
8	KYEBANDULA 9	29.5	18.0	1.6	5.0
9	BND1	27.3	17.5	1.6	9.0
10	SILKLOW 6	30.1	21.1	1.4	8.0
11	SILKLOW 2	43.4	12.3	3.5	7.7
12	KYEBANDULA 16	35.2	22.5	1.6	6.0
13	NEW KAWOGO 7	33.6	21.9	1.5	7.0
14	KIGABARI 15	28.6	18.8	1.5	6.8
15	MUGANDE (Control)	25.6	11.6	2.2	5.0

Conclusion

- Population density is increasing, agricultural land is decreasing
- Zero grazing is increasing in importance in East Africa
- Rwanda and Kenya have demonstrated the potential of exploiting dual purpose sweetpotato; breeding can be used to improve performance


Acknowledgement

RESEARCH PROGRAM ON Roots, Tubers and Bananas

