

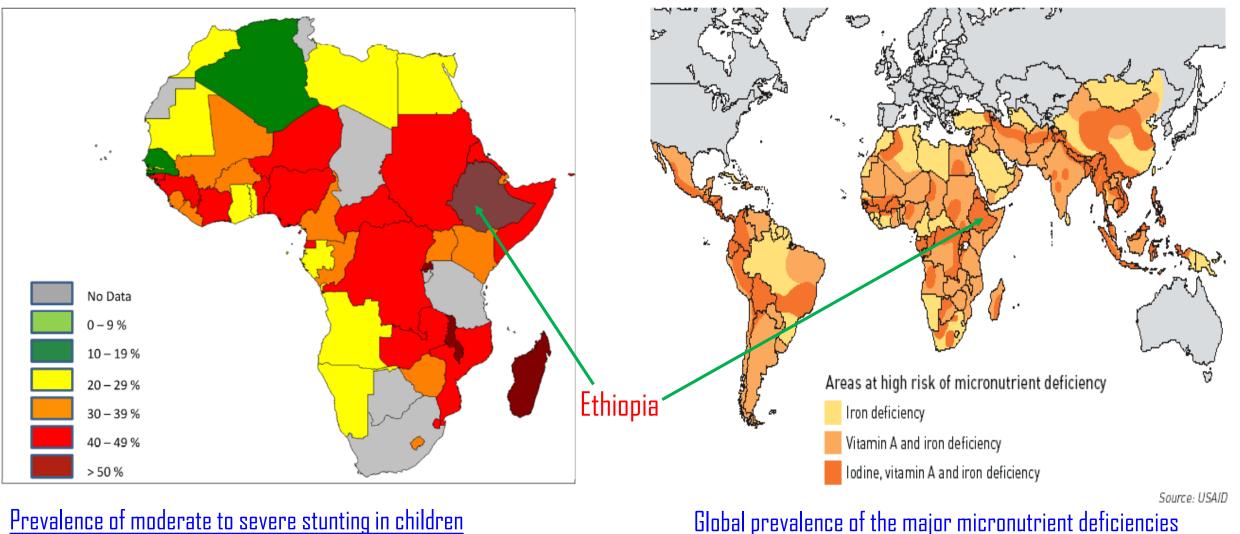
Energy and Micronutrient Densities of Complementary Foods Developed from a Composite of Teff, Soybean and Orange-fleshed Sweet Potato

Mesfin W. Tenagashaw Dr. John Kinyuru, Prof. Glaston Kenji, Dr. Eneyew Melaku E-Mail: <u>mesfinwogayehu@gmail.com</u>

Bahir Dar University (Ethiopia); Jomo Kenyatta University of Agriculture and Technology (Kenya)

The 5th MPU CoP Meeting, 23rd – 24th April, Blantyre, Malawi

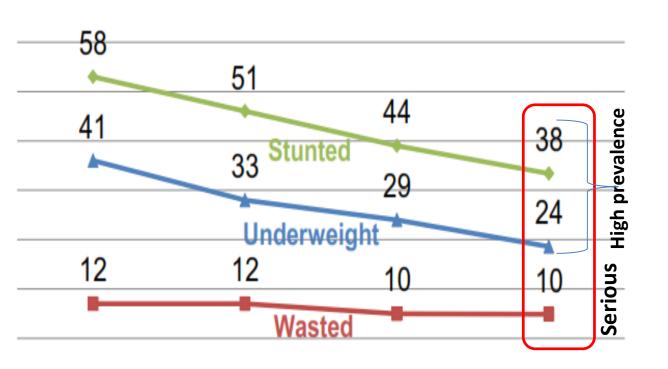
Orange-fleshed Sweetpotato (OFSP) Value Chains for Sustainable Food Systems in Sub-Saharan Africa: A model for Root and Tuber Crops and Banana


Presentation Outline

- Introduction
- Problem statement
- Raw materials
- Processing
- Formulation of complementary foods
- Preparation of complementary foods
- Determination of nutrient density
- Results
- Conclusion

Introduction

- The most neglected form of human deprivation is malnutrition:
 - ★ Protein-energy malnutrition (PEM)
 - ★ Micronutrient malnutrition (MNM)
- > Infants and children the most vulnerable and highly affected groups of any society (rural areas + urban slums)
- - Complementary foods (CFs)
- >> Worse during the second 6 months of the infant's life
 - The challenge for meeting nutrient needs is very high
- - > Highest prevalence of stunting in Eastern & Central Africa
 - ☞ 50% and 42%, respectively (2008)
 - > One third of all undernourished children globally reside in Sub-Saharan Africa (2015 MDG report)
- Around the world (2014): Stunting: About 159 million; Wasting: About 50 million

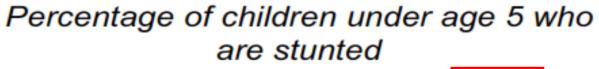

Introduction

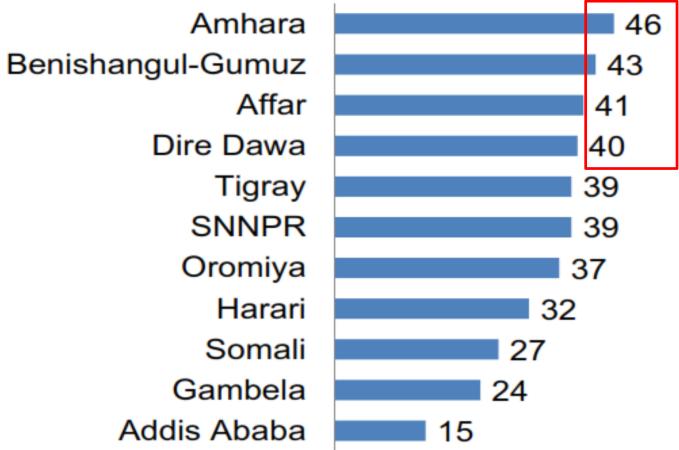
under five years of age in Africa (Fanzo, 2012)

Global prevalence of the major micronutrient deficiencies (Challenged Kids International, 2013)

The Scenario in Ethiopia

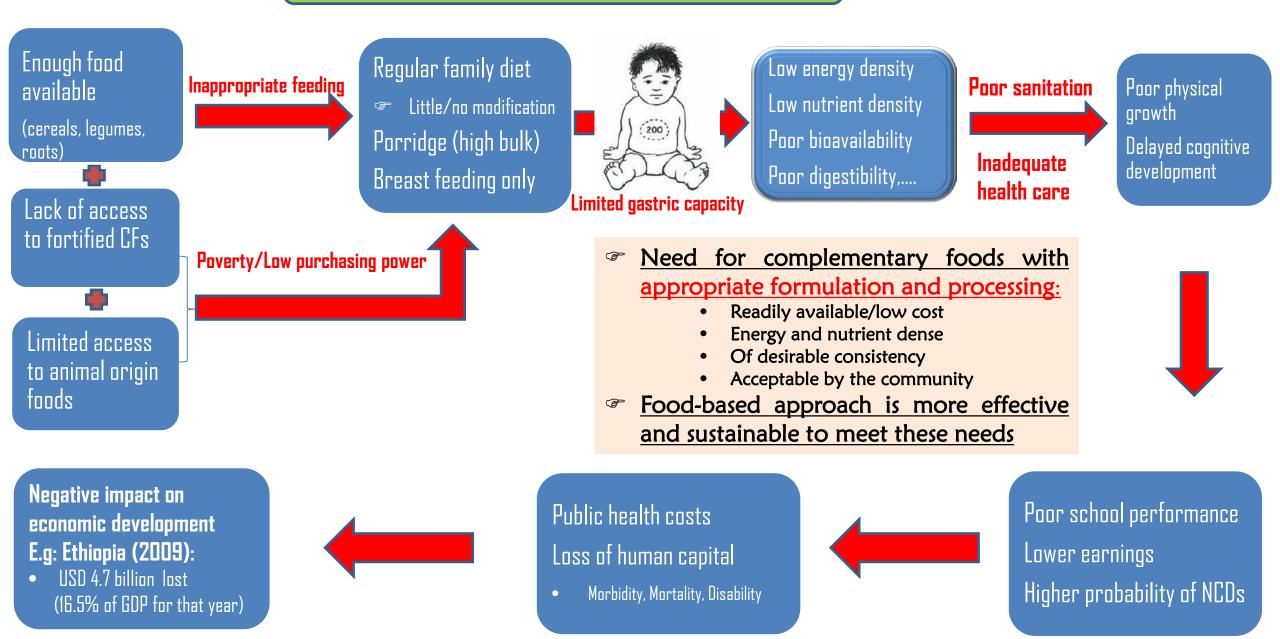
2000 EDHS 2005 EDHS 2011 EDHS 2016 EDHS


Trends of stunting, underweight and wasting among Ethiopian children _EDHS surveys (2000, 2005, 2011, 2016)


- Malnutrition among infants and children is very high (EDHS, 2016):
- More than 50% of all childhood deaths in Ethiopia
 - The 6th highest country in the world
- ⇒ The 2nd highest rate of MNMs in Africa
 - IDA about 44% of children under 5 years
 - VAD_Public health problem
- Inappropriate infant and child feeding practices:
 - Only 4% of children (6-23 months) fed appropriately (EDHS 2011)
 - Regular family diet_Monotonous, or
 - Cereal-only or cereal-legume porridge

Poor quality of infant foods

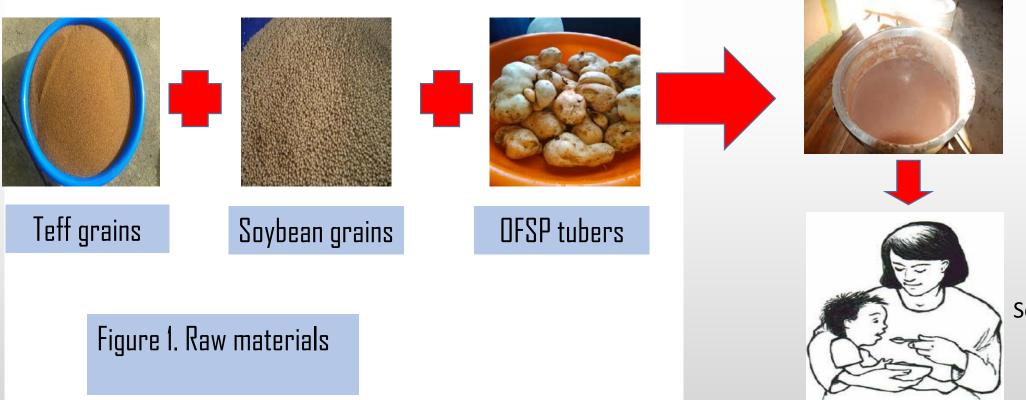
Current recommendations: Processing locally available crops, compositing


Ethiopia

Stunting in children by region

The Problem

Energy and Nutrient Density


⇒Of paramount importance in complementary feeding

- Energy density amount of calories per unit of volume or weight of the food
- Nutrient density amount of nutrient per 100 kcal of food
- Complementary foods should be energy and nutrient-dense
 - Rapid growth and development of infants
 - Limited gastric capacity

Raw Materials

 Compositing of the raw materials aiming at complementarity of nutritional components
 Food-to-food fortification

Source: WHO, 2009

Raw Materials....Cont'd

Teff (Eragrostis tef)

✓ Staple crop (approximately 20% of cereal production in Ethiopia (mainly *injera* preparation)
 ✓ Provides over two-thirds of the human nutrition
 ✓ Rich in iron (especially the red variety), calcium, other minerals, fibre

✓ Excellent essential amino acids balance

E.g. Lysine levels higher than wheat or barley

Soybean (Glycine max)

✓ Commonly produced in many parts of Ethiopia
 ✓ Rich in protein (quality + quantity), up to 40%
 ✓ Well-balanced amino acid pattern, PDCAA close to 1.0
 ✓ High fat content (~20%)

 Appreciable proportion of unsaturated fatty acids such as linoleic and linolenic acid

✓ Phytochemicals: Health benefits

Grange-fleshed sweet potato [OFSP] (Ipomoea batatas)

- ✓ Ethiopia is one of the largest sweet potato producing countries in East Africa
 - ✓ OFSP already introduced
- ✓ Developed for tackling VAD and energy deficiency simultaneously

 \checkmark Rich in $\beta\text{-carotene}$ and starch

- ✓ Close to 90% of the carotenoids is
 β-carotene
- ✓ Imparts antioxidant activity, flavour (fructose)

Processing of Raw Materials

i. Processing of teff

Processed into three types of flours:

- ungerminated teff flour
- germinated teff flour_24 h
- germinated teff flour_48 h

Ungerminated teff flour

Used for developing household- and industrial-level complementary foods

Figure 2. Preparation of ungerminated teff flour

Milling

Dried grain

Teff grain

Germinated teff flour

- Teff grains germinated for two durations at room temperature:
 - 24 h, 48 h
- Germinated teff flour
- Used in formulation of household-level complementary foods

Teff

Cleaning (Removal of dirt)

Washing (Tap water)

Soaking (12 h)

ii. Processing of soybean

- Soybean was processed to give three different types of flours:
 - Soybean flour_unblanched/unroasted

Roasting

- Blanched soybean flour
- Roasted soybean flour

Soybean

Blanching

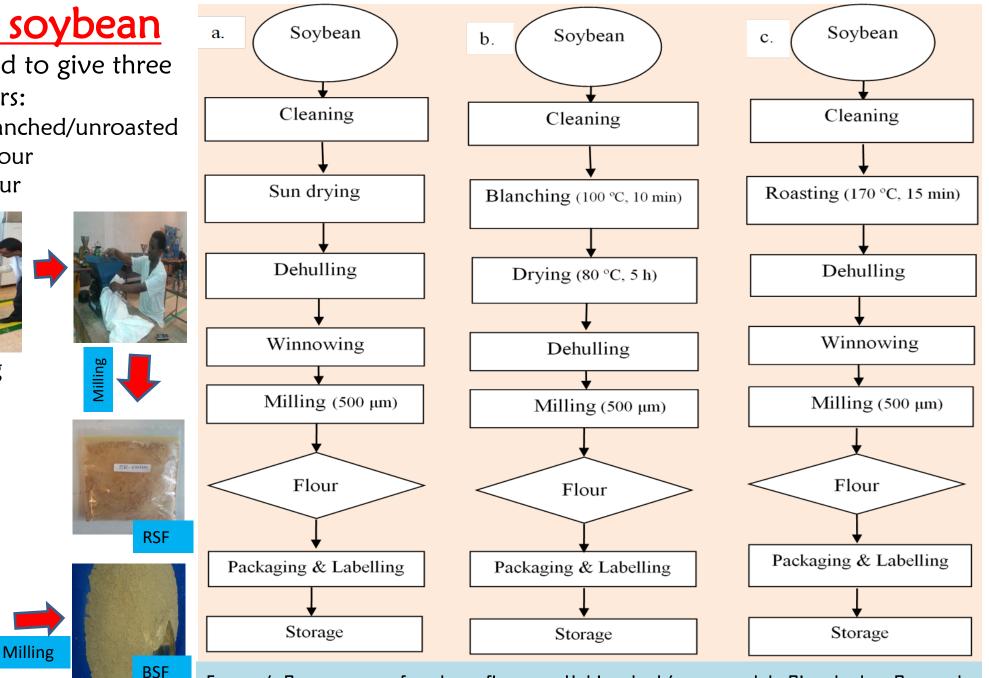
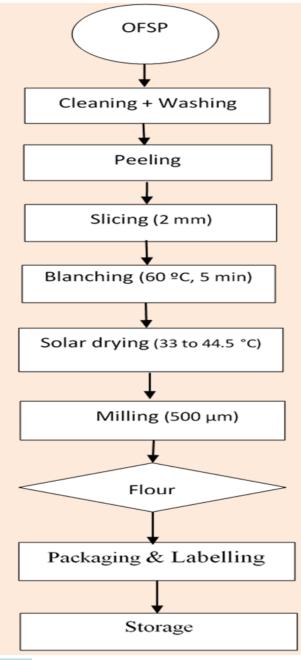



Figure 4. Preparation of soybean flours: a. Unblanched/unroasted b. Blanched c. Roasted

iii. Processing of orange-fleshed sweet potato

- ✓ According to the method described by Haile et al., (2015)
- ✓ Fresh OFSP tubers were processed into flour
 - Used to prepare both household and industriallevel complementary foods

Figure 5. Preparation of orange-fleshed sweet potato flour

Formulation of Complementary Foods

- Used a proportion of 70:20:10 (w/w) for teff (the base ingredient), soybean and OFSP flour, respectively
 - Based on the recommendations to use 75% cereal and 25% legume blend for formulation for complementary foods
- Addition of OFSP flour (10%) by replacing 5% from each of teff and soybean
 - To supplement the formulations with β -carotene (Vitamin A)
- Approximation for adequacy of major nutrients using NutriSurvey software (2007)
- In case of household-level CFs, 10% germinated teff flour used 60% ungerminated teff flour
- Two types of complementary foods:
 - ✓ Household level (blending) and Industrial level (extrusion cooking)

Table 1. Formulations of complementary flours with the respective ingredients and their percentage proportions (w/w)

Formulation	Processing method	Ingredients (Flour)	Proportion (%)
		Ungerminated teff	70
ComF1	Extrusion cooking	Soybean (Unblanched/unroasted)	20
		OFSP	10
		Ungerminated teff	60
ComF2	Household methods	Germinated teff (24 h)	10
		Blanched soybean	20
		OFSP	10
		Ungerminated teff	60
ComF3	Household methods	Germinated teff (24 h)	10
		Roasted soybean	20
		OFSP	10
		Ungerminated teff	60
ComF4	Household methods	Germinated teff (48 h)	10
		Blanched soybean	20
		OFSP	10
		Ungerminated teff	60
ComF5	Household methods	Germinated teff (48 h)	10
		Roasted soybean	20
		OFSP	10

17

Development of Complementary Flours

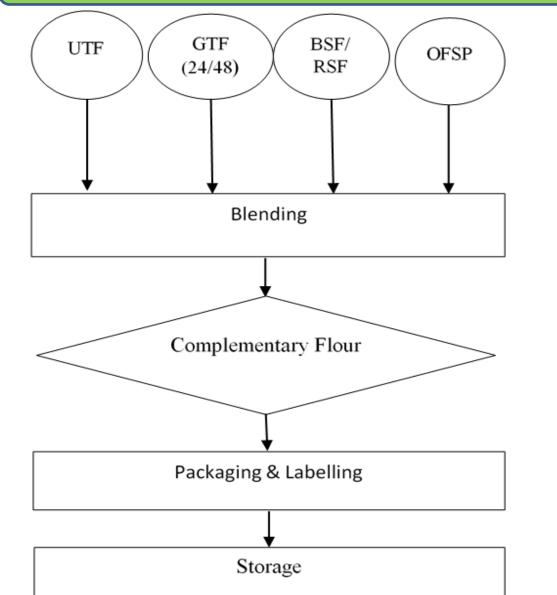


Figure 6. Blending of ingredient flours to develop household-level CFs

Household-level complementary flours

Complementary Flour (Final blend)

Key: UTF – Ungerminated teff flour; GTF – Germinated teff flour; BSF – Blanched soybean flour; RSF - Roasted soybean flour; OFSP - OFSP flour

manually

Further mixing of

ingredients with a mixer

ii. Industrial-level complementary flour

- Preparation of a <u>composite flour</u>:
 - Ungerminated teff flour
 - Soybean flour (unblanched/unroasted)
 - OFSP flour
- Extruded into a complementary flour

Figure 7. Development of extruded complementary flours

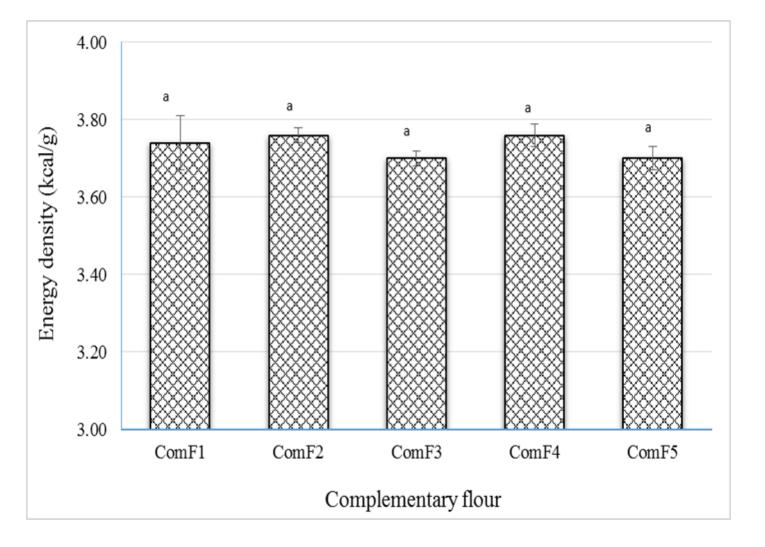
SF

Blending

Composite Flour

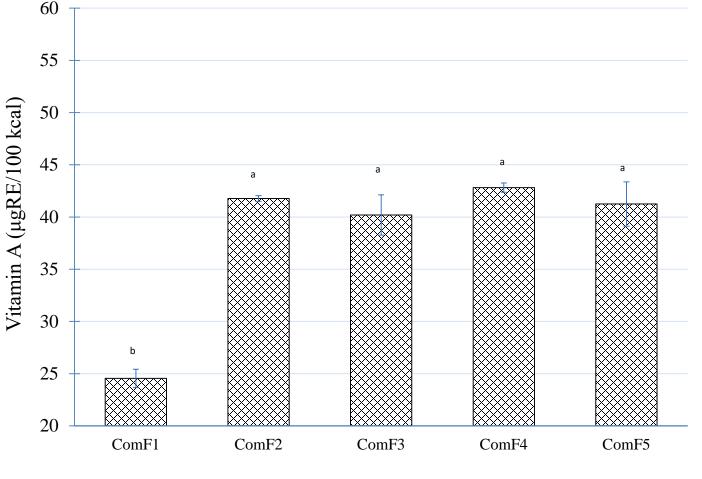
Extrusion cooking

UTF


OFSP

Determination of Nutrient Density nined from the respective nutrient contents of

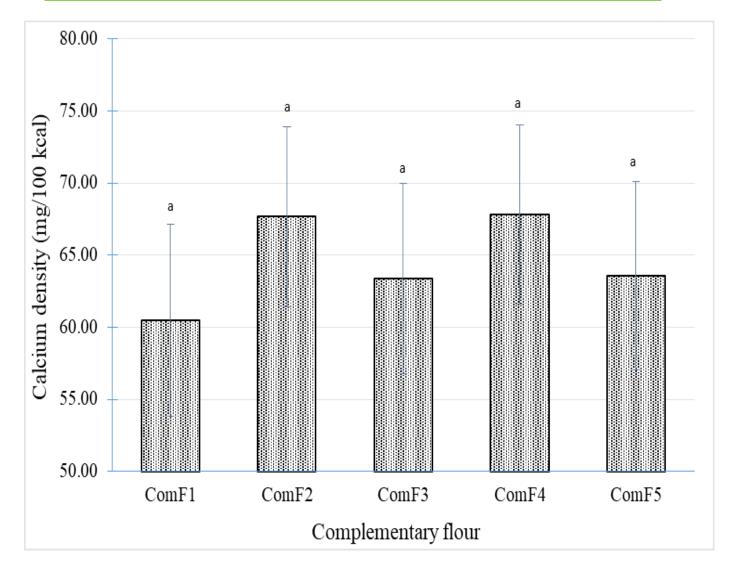
- V Determined from the respective nutrient contents obtained through laboratory analyses
 - Energy
 - Micronutrients
 - β-carotene/vitamin A, Calcium, Iron, Zinc
- V Energy and nutrient contents were converted into energy density (kcal/g) and nutrient density (mg/100 kcal)
- V Energy density was determined by dividing the energy contents of the complementary foods by 100
- V Nutrient density obtained by dividing the nutrient content by its energy content and then multiplying by 100


<u>Energy Density</u>

➢ Energy density in the range of 3.70 to 3.76 kcal/g
 ☞ The complementary foods are energy dense
 ☞ Effect of processing methods
 ➢ Energy density of cereal-based CFs should be ≥4.0 kcal/g (Codex)

Figure 8. Energy density of the complementary foods

<u>Micronutrient</u> Density

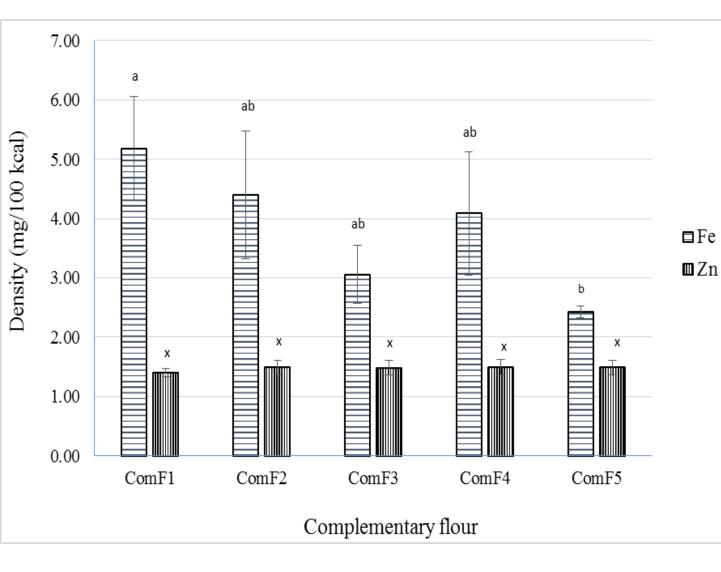

Complementary flour

• Vitamin A density **24.55 to 42.81** µg RE/100 kcal

- The lowest for ComF1
 - Loss of β-carotene because of degradation during extrusion cooking
 - high contents of householdlevels CFs---mild processes
- The minimum stipulated vitamin A density of cereal-based CFs for 6 to 8 month-old infants is 31 μg RE/100 kcal

Figure 9. Vitamin A density of complementary foods

<u>Micronutrient... Cont'd</u>


Calcium density in the range of 60.68 to 67.84 mg/100 kcal

All CFs satisfactorily met the requirement by infants of 6 to 8 months old

- 50 mg/100 kcal

Figure 10. Calcium density of the complementary foods

Micronutrient...Cont'd

- Iron density: 2.42 to 5.19 mg/100 kcal
 - Recommended = 4.5 mg/100 kcal
- ComF1 had the highest value -Extrusion cooking
- Absorption of iron from plant-origin foods is very low, up to 8%
 - advisable if cereal-based CFs are fed with a small quantity of:
 - animal-origin foods (meat and fish) or
 - other iron absorption enhancers (fructose and ascorbic acid)
- Zinc density: 1.41 to 1.49 mg/100 kcal
 - Slightly below the recommended value of 1.6 mg/100 kcal

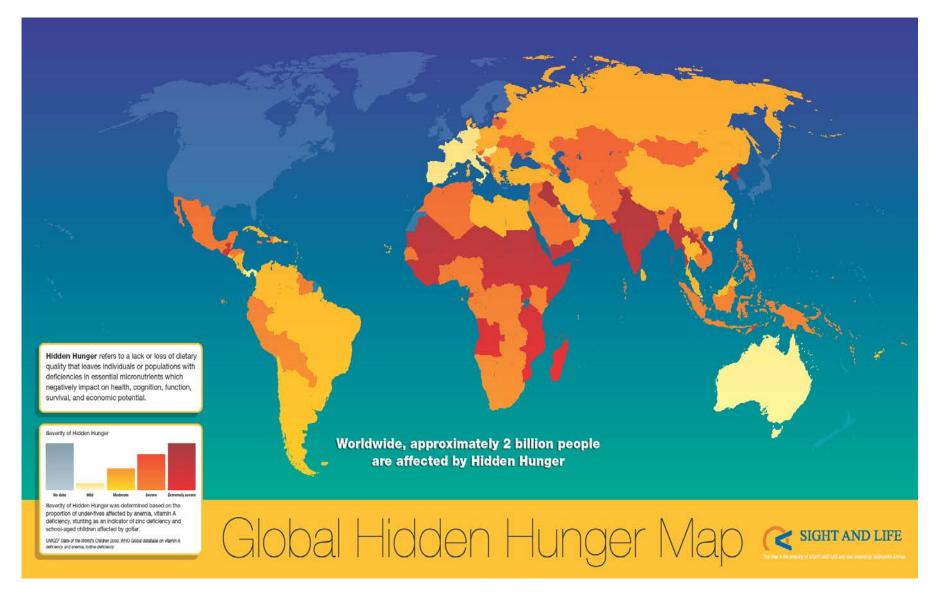
Figure 11. Iron and zinc density of the complementary foods

Conclusion

- Energy and nutrient dense teff-based complementary foods fortified with soybean and OFSP were developed
 - Household level
 - Industrial level
- The complementary foods appreciably met recommended levels of micro-nutrient densities:
 - vitamin A, and minerals (Calcium, Iron, Zinc) Compositing + Processing
- > Loss of β -carotene may be prevented by blending the OFSP after extruding a mixture of teff and soybean
- The approach benefits low-income groups in the Sub-Saharan Africa
 - The processing approaches are easily applicable at home- and/or community-level.

Acknowledgement

- Bahir Dar Institute of Technology, Bahir Dar University
- Faculty of Agriculture, JKUAT
- Agriculture Research Centres (Awassa and Pawe),
- School of NFST, Hawassa University
- RUFORUM/DAAD
- Humboldt University, Germany



A well-fed infant is healthy, happy and productive! (WHO, 2000)

Cut-off Values for Public Health Significance

Underweight	< 10% Low prevalence
	10-19% Medium prevalence
	20-29% High prevalence
	≥ 30% Very high prevalence
Stunting	< 20% Low prevalence
	20-29% Medium prevalence
	30-39% High prevalence
	≥ 40% Very high prevalence
Wasting	< 5% Acceptable
	5-9% Poor
	10-14% Serious
	≥ 15% Critical

<u>Global hidden hunger map</u>

Why Teff, Soybean, OFSP?

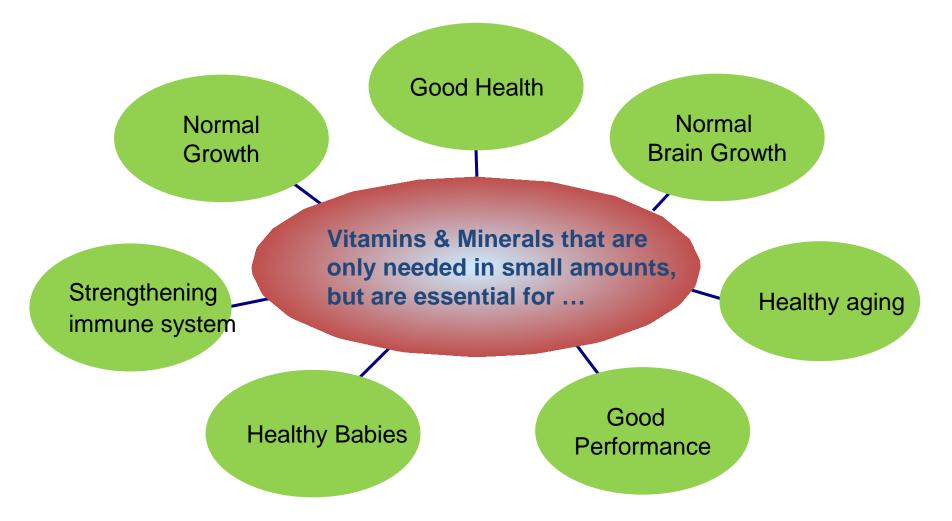
- Staple crop for Ethiopia----highly valued
- Excellent nutrient profile: essential amino acids, fiber, iron, calcium, potassium + more
- Red teff has the highest iron content
- Becoming a functional food nowadays!

Soybean

- High protein content, well-balanced amino acid pattern, high fat content
- Complements the protein of cereals quantity + quality
 - Rich in lysine and tryptophan
- Promoted for improving food security problems

Sweet potato (OFSP)

- Produced in large quantity but the white variety
- OFSP is highly promoted to prevent VAD
 - Excellent source of beta carotene


Why Teff, Soybean, OFSP

• Teff

- A significant crop in only one country in the world- Ethiopia
- Probably the tiniest grain on the planet
- Excellent source of essential amino acids, especially lysine
- an excellent source of fiber and iron, and has many times the amount of calcium, potassium and other essential minerals found in an equal amount of other grains
- gluten-free, and is gaining popularity in the whole food and Health food industry
- Red teff has the highest iron content
 - Iron content = 11.5 150 mg/100g

Micronutrients (vitamins and minerals)

are essential for many functions and health

They cannot be produced by the body and have to come from the diet