Phytochemicals content of Selected Kenyan Orange Fleshed Sweetpotato (OFSP) varieties

MPU COP
Lotus hotel
Blantyre, Malawi
22-25 April 2018

Authors

¹ George O. Abong', ²Muzhingi Tawanda, ¹Michael W. Okoth, ³Machael Akhwale, ⁴Fredrick Munga, ⁴Phillis E. Ochieng', ²Daniel M. Mbogo, ²Derick Malavi, ⁴Ghimire Sita

¹University of Nairobi

²International Potato Centre, Nairobi, Kenya

³Kenya Agriculture Livestock Research Organization, Kakamega, Kenya

⁴Bioscience Eastern and Central Africa, ILRI Hub, Nairobi Kenya

Introduction- Developmental challenge

- Mulnutrition- 153 million people severely food insecured in SSA
- Challenges remain in meeting SDGs 1 and 2 (FAO, 2016).
- Staples critical to food nutrition and security
- Major staple-maize faced with challenges e.g.MLN, drought episodes
- Alternative crops e.g. Sweetpotato critical-OFSP Biofortified- value added Nutritious products

Why OFSP Sweetpotato?

- Provitamin A carotenoids.
- Low-medium glycemic index (GI) (Fetuga et al., 2014).
- Antioxidants such as flavonoids, vit. C, phenolics and anthocyanins (Pochapski, et al., 2016).
- Resilient, grows in marginal lands
- **Dual** purpose:
 - Both leaves and roots are utilized
 - Cash and food security crop

Why this research.....

- Despite their nutritional role in sweetpotato, phytochemicals vary in fresh and processed products.
- These variations influence quality and stability of processed products-yet to be fully established.
- Analysis of phytochemicals- mainly focused on beta carotene with limitations on other beneficial phytochemicals.
- Give additional important information for promotion of OFSP.

Objective

To develop OFSP products with high nutritional (phytochemicals) quality

Research activity

Quantification of phytochemicals and anti-oxidant properties of released OFSP roots and leaves.

Sampling-7 OFSP varieties and 2 local varieties as controls-KALRO KK

Sample preparation and analysis: Phenolics, Flavanoids, Vitamin C, Oxalates, tannins, phytates, total antioxidant ppty

Lab analysis

Standard methods used in analysis-FANEL

LAB

Dry matter Content: Oven drying (AOAC, 2012)

Vitamin C content: HPLC-ASEAN Manual (2012), modified

Phenolics, Tannins, Flavanoides & antioxidant activity: Micro-titre plate reader.

Phytates-K-PHYT 11/15 Kit.

Oxalates-HPLC-Nguyen and Savage, 2015
Glicemic response-Digenion PMSA-Argyri et

Results-Dry matter Content: Significant varietal differences; low in OFSP roots (most below 30%), low in leaves than roots

Fig. 1: Dry matter content in seven Kenyan OFSP varieties. The bars indicate standard error of means

Corotenoids in roots and leaves- higher variation in leaves

Figure 2: Carotenoids chromatogram for raw roots and leaves. a=Lutein, b=Zeaxanthin, $c=\beta-cryptoxanthin$, d=13 Cis β -carotene, e=All trans β -carotene, f=9 Cis β -carotene.

Carotenoids content: Differed significantly ($P \le 0.05$) among varieties and plant parts, the leaves indicating significantly (≤ 0.05) higher values than roots

Fig. 2: Variations in carotenoids content among nine sweetpotato varieties. Bars are standard error of means

Vitamin C: varied significantly (P≤0.05) among the sweetpotato varieties regardless of the plant part- higher in leaves. **Roots: 4.53-19.05** but Leaves: **46.64-349.05** mg/100g dwb

Fig. 3: Vitamin C content in sweetpotato varieties. Bars indicate standard error bars

Flavanoids and phenolics: Flavanoids: ND-25.8 CE/100 g in roots; 4097-7316 CE/100 g in leaves.

Phenolics: ND-224 GAE/100 g in roots; 4496-6801 GAE/100 g in leaves

Fig. 4: Flavanoids and phenolics in sweetpotato. Bars indicate standard error bars

Phytates: High in leaves (1.14-4.43 g/100g), lowest in roots (0.05-0.42 g/100g)

Fig.5: Phytates content of sweetpotato leaves and roots. Bars indicate standard error of means

Tannins: significantly Higher in leaves (0.9-5.1 g/100g), lowest in roots (ND-0.1 g/100g)

Fig 6. Tannins content in roots and leaves of nine Kenyan sweetpotato varieties. The bars indicate standard error of the means

Oxalate: significantly Higher in leaves (0.9-5.1 g/100g), lowest in roots (ND-0.1 g/100g)

Figure 7: Soluble oxalates in roots and leaves of nine Kenyan sweetpotato varieties. The bars indicate standard error of the means.

Phytochemicals and antioxidant property: Significant correlation noted

Table 1: Pearson correlation (r) between phytochemicals and antioxidant property

Parameter	Ascorbic Acid	Flavanoids	Phenolics	Total Carotenoids	Beta Carotene
Antioxidant property P value	0.931 <0.0001	0.964 <0.0001	0.975 <0.0001	0.923 <0.0001	0.831

Antinutrients and antioxidant property: Significant correlation noted-lower than beneficial

Table 2: Pearson correlation (r) between phytochemicals and antioxidant property

Parameter	phytates	tannins	oxalates
Antioxidant property	0.796	0.885	0.778
P value	<0.0001	<0.0001	<0.0001

Conclusions

- There is a wide variation of the phytochemicals in sweetpotato leaves and roots, leaves being superior in all aspects evaluated including antioxidant properties.
- The current information is important for diets and ration formulations.
- Determination of the effects of processing methods on these phytochemicals would, however, give a better picture of the actual amounts being ingested by consumers of different OFSP products. See poster.

Acknowledgement

- BecA-ILRI Hub donors
- ILRI Capacity Building team
- International Potato Centre (CIP)
- University of Nairobi (UoN)
- KALRO- Kakamega