Progress on breeding -East & Central Africa Sweetpotato Support Platform

Robert Mwanga, Reuben Ssali, Girisom Bwire, Jan Low, Wolfgang Grüneberg, Raul Eyzaguirre

17th Sweetpotato Speedbreeders' and Genomics CoP meeting, Nairobi, Kenya

5-8 June 2018

SWEETPOTATO ACTION FOR SECURITY AND HEALTH IN AFRICA

Outline

- Milestones for the East and Central Africa breeding platform/ SASHA
- Summary of on-going breeding trials
- Progress on the milestones
- Workplan
- Way forward

Four Milestones

(1) MS1.1.1. Studies demonstrating that significant genetic gain (2% per year in yield) can be achieved in 2 years in early generations and 4 years for selected varieties; (2) MS1.1.3. At least 14 African sweetpotato breeders breed using the latest knowledge and efficient methods; (3) MS1.2.1. At least 250,000 seeds with increased frequencies of resistance to SPVD (2-10%) disseminated to at least 10 NARS partners; and (4) MS1.2.3. Selected hybrid progeny demonstrating yield jumps of 10–20% from populations with SPVD resistance.

Table 1. Summary of breeding trials, January - April 2018, SASHA II breeding objectives for East and Central Africa

Trial type	Description	Location/AEZ	Comments
Crossing	Two crossing blocks: 80 parents	Namulonge	Data:
block	(population Uganda B); 50 parents (pop Ug A)	(warm, moist, tall grassland,	Crosses
	for generating populations for: national	high SPVD pressure zone)	Seed set
	program seed needs, studies e.g. SPVD		Seed distribution
	resistance, genomics, and heterosis		Seed germination
	Evaluating performance of parents,	Namulonge	Data:
	population Uganda A (50) and B (80): RCBD,	Serere and Kachwekano	Agronomic
	3 reps	Seasons: 2016A,	performance
		2016B,2017A & 2017B	Root quality
	Crossing		attributes
CIP/ NaCRE SWEET POTATO CROSSIN	G BLOCK		Completed
100 GENOTYPES 20 REPLICATIONS 50 parents	20 REPLICATIONS		

Table 1. Summary of breeding trials, May 2018, SASHA II breeding objectives for East and Central Africa						
Trial type	Description	Location/AEZ	Comments			
Observation	SPVD resistance cross test:	Namulonge	Data:			
trials		Season: 2018A Planted 6 April 2018	Response to SPVD Agronomic performance			
	80B x 50A crosses to SPVD: comprise 987 families; 6-16 genotypes/family Eliminating bad SPVD resistance parents. Experimental design: Westcott	 0.3 x 1.0 m Design: West 	est 80B x 50A ies, 2 checks			
	· · · ·	Namulonge Season 2018A	Data: Response to SPVD Agronomic performance			

Table 1. Summary of breeding trials, January - April 2018,SASHA II breeding objectives for East and Central Africa

Description Trial type Location/AEZ Comments Continuous root formation and Data: Preliminary Namulonge bulking Agronomic performance trials (Planted 3rd week of Pest/disease response 30 clones selected for continuous April 2018) Root quality attributes root formation and bulking. Kachwekano **Experimental design:** RCBD, 4 (Planted 4th week of reps April 2018) Advanced Advanced yield trial for 8 OFSP Data: Namulonge, entries Agronomic performance Kachwekano yield trial Pest/disease response Experimental design: RCBD (Planted in April Seasons: 2017B and 2018A Root quality attributes 2018) Harvested 2017B trials at Namulonge and Serere

Polycross seed generated from crossing blocks at Namulonge, 2017

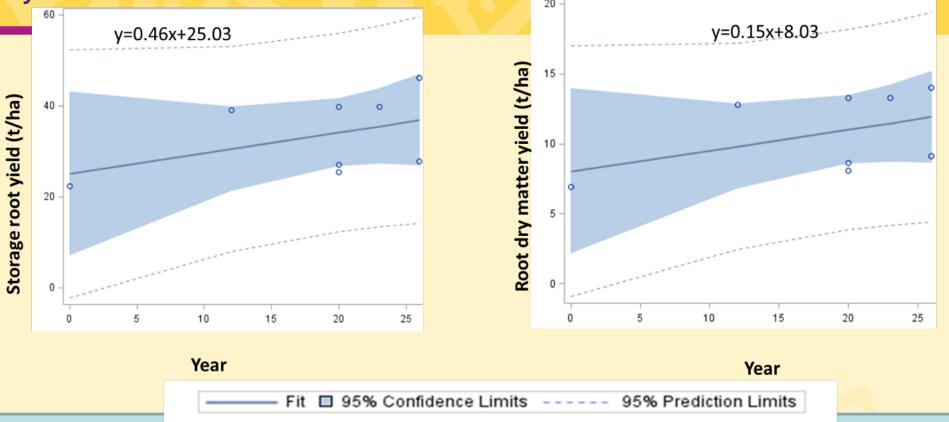
Parent	Name	Total No. of seeds	Parent Name		Total No. of seeds
B1	RESISTO	1517	B41	WAGABOLIGE	1917
B2	ARA209	1105	B42	LIR258	2091
B3	HMA496	1424	B43	PAL148	541
B4	MSD380	819	B44	RAK865	1409
B5	LUW1230	1704	B45	MPG1122	2148
_			_		
B37	BSH741	167	B77	TIS9265	843
B38	BND145L	2412	B78	CIP199062.1	<mark>24</mark> 79
B39	SRT41	2815	B79	SANTA AMARO	1202
B40	SRT01	1117	B80	HUARMAYANO	1641
				Total	113,047

Controlled cross seed generated from crossing blocks at Namulonge, 2017

Pop B Pop B No. of families Total No. Total No. Name Name No. of (Female) (Female) families with seeds with Pop A seeds parents Pop A parents **B**1 RESISTO 210 WAGABOLIGE 19 273 12 B41 B2 23 822 B42 LIR258 20 354 **ARA209 B**3 HMA496 27 926 B43 **PAL148** 14 117 **MSD380** 9 29 B44 **RAK865** 1294 **B**4 40 21 **B**37 **BSH741** 32 766 B78 CIP199062.1 192 B79 5 **B**38 BND145L 20 298 **SANTA AMARO** 16 **B**39 SRT41 29 649 B80 **HUARMEYANO** 19 357 B40 SRT01 15 188 Total 1,533 34,231

MS1.2.1. At least 250,000 seeds with increased frequencies of resistance to SPVD (2–10%) disseminated to at least 10 NARS partners;

Country (recipient/ organization)	No. of seeds	No. of families	Purpose	Year
Burkina Faso (INERA)	20,195	91	Screening trials for new variety development	2014
Kenya-NARS-KALRO)	28,000	14	Screening for high altitude adapted dual purpose genotypes	
Kenya-J.K. University	500	10	For sweetpotato weevil resistance trial	
Kenya (CIP) BecA	3548	63	Populations for sweetpotato genomics project	
S. Africa/ARC)	2,530	15	Screening for new variety development	
Uganda (NaCRRI)	107,000	13	Screening for SPVD resistance and other traits	
Malawi (Bvumbwe)	34,000	10	Screening for SPVD resistance and other traits	2015
Kenya (CIP) BecA	797	13	Populations for aweetpotato genomics project	2016
Kenya (CIP) BecA	897	14	Populations for aweetpotato genomics project	
Burundi (ISABU)	66,197	21	Screening for SPVD resistance and other traits	
Kenya (CIP) BecA	763	39	Populations for Sweetpotato genomics project	2017
CIP Ghana	38,620	17	Comparing perfomance of progenies obtained from breeding support platforms	2018
Total	303,047	320		


MS1.1.1. Studies demonstrating that significant genetic gain (2% per year in yield) can be achieved in 2 years in early generations and 4 years for selected varieties.

Storage root yield, dry matter content of sweetpotato cultivars released in Uganda at 3 sites (Namulonge, Serere and Kachwekano) – Kawogo collected in 1987

Variety	Release year	Storage root yield (t/ha)	% Storage root yield increment over Kawogo	Biomass yield (t/ha)	% Biomass increment over Kawogo	•	% Dry matter root yield increment over Kawogo
Kawogo	1987	22.3	-	66.7	-	6.9	-
NASPOT 1	1999	39	74.9	74.4	11.5	12.8	85.7
NASPOT 8	2007	39.8	78.5	66.3	-0.6	13.3	92.9
NASPOT 9 O	2007	27	21.1	43.7	-34.5	8.1	17.6
NASPOT 10 O	2007	25.5	14.3	48.7	-27	8.6	25.5
NASPOT 11	2010	39.7	78	73.4	10	13.3	93
NASPOT 12 O	2013	46.1	106.7	77.4	16	14	10 <mark>2.</mark> 7
NASPOT 13 O	2013	27.8	24.7	69.5	4.2	9.1	<u>31.9</u>

21%-106.7% storage root yield increment over Kawogo [Data: 2 seasons 2015B/2016A, 5 plants/row, 3 rows/plot, 3 reps, RCBD]

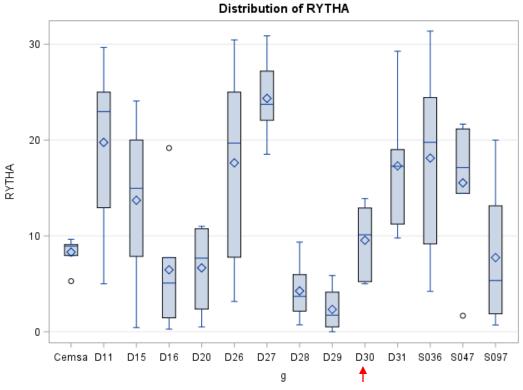
MS1.1.1. Studies demonstrating that significant genetic gain (2% per year in yield) can be achieved in 2 years in early generations and 4 years for selected varieties

Fig. 1. Storage root yield (A) and Storage root dry matter yield (B) of sweetpotato varieties against years of release since 1987 (storage root yield increment was 0.46 t/ha per year)[Data: 2 seasons 2015B/2016A, 5 plants/row, 3 rows/plot, 3 reps, RCBD)

Performance of parents at Namulonge, Serere and Kachwekano (2016A, 2016B and 2017)

Trait	Ν	Mean	Std Dev	Minimum	Maximum
SPVD	2077	2.4	0.9	1.0	7.0
Alternaria blight	2077	1.6	0.3	1.0	6.0
Weevil damage	1800	1.7	1.0	1.0	6.0
Root flesh color	1805	6.2	7.0	1.0	30.0
Storage root yield (t/ha)	1662	9.4	8.6	0.0	40.3
Biomass	1662	41.3	35.7	0.0	285.0
Foliage yield (t/ha)	2044	30.8	27.7	0.0	173.3
Commercial Root yield (t/ha)	1906	9.2	8.4	0.0	40.0
Percentage of marketable roots	1538	76.3	21.5	0.0	100.0
Harvest Index (%)	1659	27.3	19.6	0.0	9 <mark>5.</mark> 5
Number of roots per plant	1659	2.3	2.0	0.0	21.0
Yield per plant (Kgs)	1659	0.4	0.5	0.0	4.2
Establishment index (%)	2153	58.8	29.6	0.0	100.0

Genetic correlation coefficients of traits among the parents


	RYTHA	FYTHA	CYTHA	BIOM	HI	NOCRPL	BCE	SPVD	AB	wed	CI	NRPP
FYTHA	0.231											
СҮТНА	0.989	0.217										
BIOM	0.461	0.962	0.451									
н	0.603	-0.37	0.591	-0.176								
NOCRPL	0.669	0.048	0.637	0.233	0.521							
BCE	-0.083	-0.156	-0.066	-0.171	0.06	0.032						
SPVD	-0.136	-0.216	-0.131	-0.2	-0.032	-0.102	0.114					
AB	-0.039	-0.12	-0.07	-0.171	0.048	0.004	-0.015	0.14				
wed	0.144	0.122	0.141	-0.033	0.161	0.189	0.084	0.017	-0.003			
CI	0.33	0.053	0.368	0.128	0.239	0.402	-0.068	-0.004	-0.035	0.065		
NRPP	0.581	0.049	0.563	0.189	0.482	0.872	0.012	-0.09	0.061	0.16	0.019	
үрр	0.881	-0.088	0.875	0.333	0.618	0.768	-0.072	-0.117	0.007	0.14	0.31	0.708

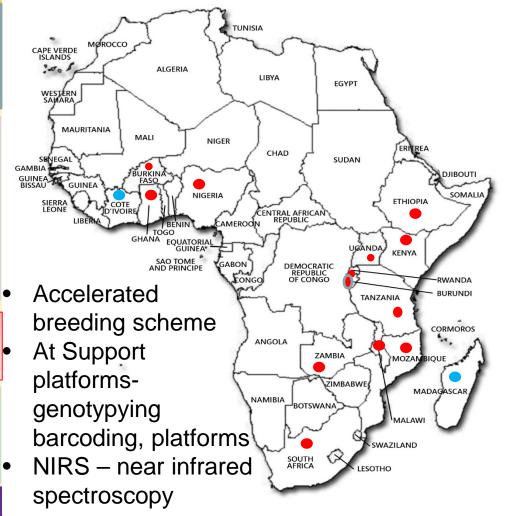
RYTHA= root yield; FYTHA= Foliage yield; BCE = beta-carotene AB= Alternaria blight; Wed= weevil damage; CI= commercial index

MS1.2.3. Selected hybrid progeny demonstrating **yield jumps** of 10–20% from populations with SPVD resistance.

Clone	Pedigree
D26	Huarmeyano x NASPOT 10 O
S047	Resisto x Magabali
D11	Huarmeyano x Ejumula
D30	NASPOT 10 O x
D15	NASPOT 5/58 x NK259L
S097	NASPOT 11 x SPK004
S010	NASPOT 7 x
S036	Mugande x Ejumula
-	

MS1.1.3. At least 14 African sweetpotato breeders breed using the latest knowledge and efficient SASHA methods.

> 10 PhDs, 3 MScs Sweetpotato breeders trained 2009-2017



Since 2009, 10 countries have released 84 superior varieties (of them 42 orange-fleshed; 22 drought tolerant; 2 purplefleshed)

13 Countries with crossing blocks/breeding

2 Countries with

 sweetpotato evaluation/ selection activities

Variety releases 2017/2018

Country	Name of variety	Flesh color	Status/Introduction=I; B=bred; S=selection	Year of release
Burundi	Cacearpedo	Orange	I (CIP-Kenya)	2017
	97062	Orange	I (CIP-Kenya)	2017
Ethiopia	Hawassa 09	White	I (IITA)	2017
Ghana	CRI-GAVANA	Dark yellow	В	2017
	CRI-Mbofara	Cream	Landrace	2017
	SARI-NAN	Orange	Landrace	2018
	SARI-Numingre	White	Landrace	2018
	SARI-Diedi	Purple	I (Tuskegee - USA)	2018
Kenya	Shock5	Cream	S (Uganda)	2018
	Kyebandula13	Cream	S (Uganda)	2018
	Kyebandula6	Cream	S (Uganda)	2018
	Silkow6	Orange	S (Uganda)	2018
	New Kawogo14	Cream	S (Uganda)	2018
	NASPOT 12 O	Orange	I (Uganda)	2018
	Irine	Orange	I (Mozambique)	2018
	Sumaia	Orange	I (Mozambique)	2018

Variety releases 2017/2018 Cont'd

Country	Name of variety	Flesh color	Status	Year of release
Madagascar	Delvia	Orange	l (Mozambique)	2017
	Jane	Orange	l (Mozambique)	2017
	Lourdes	Orange	l (Mozambique)	2017
	Irene	Orange	l (Mozambique)	2017
	Erica	Orange	l (Mozambique)	2017
Malawi				
	BV11/131	Orange	S (Uganda)	2018
	BV11/106	Orange	S (Uganda)	2018
	BV11/150A	Orange	S (Uganda)	2018
Uganda	NAROSPOT1 (New Dimbuka)	Cream	В	2017
	NAROSPOT 2	Cream	В	2017
	NAROSPOT 3	Cream	В	2017
	NAROSPOT 4	Cream	В	2017
	NAROSPOT 5	Cream	В	2017

Bred = B ; Seedling selection (+ country from which seed was introduced) = S. Kenya released five cold tolerant varieties: Shocks5, Kybandula13, Silklow6, Kyebandula6, New awogo14 48% OFSP of total released (16/31). 50% OFSP of new releases (bred/selected, 4/8)

Publications

- Published 2017 (Excludes publications on Genomics Project)
- 1.Mwanga R.O.M., M.I. Andrade, E.E. Carey, J.W. Low, G.C. Yencho, and W.J. Grüneberg. 2017. Sweetpotato (*Ipomoea batatas* L.). In H. Campos and P.D.S. Caligari (ed.) Genetic Improvement of Tropical Crops. Springer International Publishing AG, Gewerbestrasse, Cham, Switzerland, Pages 181-218. DOI 10.1007/978-3-319-59819-2.
- 2. Asindu M., G. Elepu, E. Ouma, G. Kyalo, P. Lule and D. Naziri 2017: Sweet potato wastes in major pig producing districts in Uganda: an opportunity for investment in silage technologies. Livestock Research for Rural Development. Volume 29, Article #216. Retrieved November 13, 2017, from http://www.lrrd.org/lrrd29/11/asim29216.html
- 3.Mwanga R.O.M., M.I. Andrade, E.E. Carey, J.W. Low, G.C. Yencho, and W.J. Grüneberg. 2017. Sweetpotato (Ipomoea batatas L.). In H. Campos and P.D.S. Caligari (ed.) Genetic Improvement of Tropical Crops. Springer International Publishing AG, Gewerbestrasse, Cham, Switzerland, Pages 181-218. DOI 10.1007/978-3-319-59819-2.
- 4.Lowa, J.W., R.O.M. Mwanga, M. Andrade, E. Carey and A. Ball. 2017. Tackling vitamin A deficiency with biofortified sweetpotato in sub-Saharan Africa. Global Food Security, 14:23-30.
- https://doi.org/10.1016/j.gfs.2017.01.004.

Publications

Published 2017 (Excludes publications on Genomics Project)

5. Low J., A. Ball, S. Magezi, J. Njoku, R. Mwanga, M. Andrade, K. Tomlins, R. Dove, and T. van Mourik. 2017. Sweet potato development and delivery in sub-Saharan Africa. 2017. African Journal of Food, Agriculture, Nutrition and development 17(2):11955-11972.

6. Ramírez, D.A., C. Gavilána, C. Barreda, B. Condori d, G. Rossel, R.O.M. Mwanga, M. Andrade, P. Monneveux, N.L. Anglin, D. Ellis, and R. Quiroz. 2017. Characterizing the diversity of sweetpotato through growth parameters and leaf traits: Precocity and light use efficiency as important ordination factors. 2017. South African Journal of Botany 113:192-199.

7. Kabirizi J,M., P. Lule, G. Kyalo, S. Mayanja, J. F. Ojakol, D. Mutetikka, D. Naziri and B. Lukuyu, 2017. Sweetpotato Silage Manual for Smallholder Farmers, CIP/NARO, 2nd Edition, Kampala.

Workplan

(1) MS1.1.1., MS1.1.3, MS1.2.1 (genetic gain, increasing SPVD frequency,

demonstrating yield jumps)

- a) Produce populations (seed) from crossing blocks for population improvement (population Uganda A and Pop Uganda to NARS for selection.
- b) Evaluate populations for increased SPVD resistance from the parent-offspring analysis, i.e. 2149 progenies from nine SPVD resistant parents (8 parents: 4A X 5B)
- c) Eliminating bad SPVD resistance parents i.e. using 1,600 families from the 80 x 50 parents (8,728 genotypes); each family has at least 16 genotypes.
- (2) Capacity building:
- Isaac Bagaga (MSc, Makerere University), Thesis topic: A mathematical model for the dynamics and optimal control strategy of sweetpotato virus disease in Uganda
- Scovia Adikini (Makerere University), Thesis title: Contribution of sweetpotato viruses to cultivar decline in Uganda (waiting to defend, submitted PhD thesis)
- Astère Bararyenya, thesis title Continuous root bulking experiments field/BecA PhD research Scovia
- Backstop: Burundi, Ethiopia, Rwanda, Kenya, Tanzania, : Follow up on field protocols and data processing

Way forward

Focus on Product Development: East & Central Africa, high virus pressure agroecologies

Must have:

High SPVD resistance combined with orange flesh (high beta-carotene) color, 120 days to maturity, High dry content matter (above 29%), preferred table quality. Desirable traits:

- Wide adaptation across Lake Victoria zone, EA highlands (Alternaria resistance),
- Northern EA (drought tolerance)
- Processing quality
- High upper biomass production for animal feed
- Purple flesh (anti-oxidants)?
- **Approach:** Exploit heterosis and offspring parent analysis to increase SPVD resistance for the East & Central breeding platform based in Uganda
- High throughput NIR for quality in fresh root samples (dry matter, b-carotene, sugars)
- Link with genomics project; develop fast throughput molecular markers for SPVD resistance

Thank you for your attention