

Sweetpotato Breeding Activities in East and Central Africa

Benjamin Kivuva, Gorrettie N. ssemakula, Benard Yada, Jean Ndirigue, Damien Shumbusha, Kido Mtunda, Eeverina Lukonge, Fekadu Gurmu, Astere Bararyenya and Gaspard Nihorimbere

SWEETPOTATO ACTION FOR SECURITY AND HEALTH IN AFRICA

Introduction

Countries covered:-

- 1. Kenya
- 2. Uganda
- 3. Tanzania
- 4. Ethiopia
- 5. Rwanda
- 6. Burundi

Key traits bred for

Country				Key trait			
Burundi	High yield	High beta carotene	SPVD Resistance	Alteranaria Resistance	0 3	Continuous Stora formation/ bulking	•
Ethiopia	Root yield	Beta- carotene	Dry matter				
Rwanda	Root Yield	Beta- carotene	DMC	Dual- purpose	Processii	ng Quality	
Kenya	Root yield	Dual use	DMC	Beta- carotene	Process ing quality		Alternaria Resistance
Tanzania	Pests tolerance	Diseases Resistance	DMC	high yield			
Uganda	SPVD, SPW resistance	Alternaria Blight resistance	Root Yield	Dry matter	pro- vitamin A	Anthocyanins	

Traits would like to breed for but resources are similed

Security and Health in Africa

Burundi	Nutritional qualities (antioxidants)	Weevil		
Ethiopia	SPVD	Weevil	Drought	
Rwanda	Root shape	Anthocyanin	Vines/cooking types	
Kenya	Weevil	Drought	Processing quality	
Tanzania	Early maturing,	weevil	drought	
Uganda	Drought	Herbicide resistance	Processing traits (skinning resistance, starch quality, shapes, storability, oxidation	Earliness

resistance

Engagement with farmers and consumers

Security and Health in Africa

Country	Engagement/Agronomic				
	Participatory on-station (pos)	Participatory on-farm (pof)	pos & pof		
Burundi	No	Yes	No		
Ethiopia	No	Yes	No		
Rwanda	No	Yes	No		
Kenya	No	Yes	No		
Tanzania	Yes	Yes	No		
Uganda	Yes	Yes	Yes		
	Organolepti	c assessment/Tasting			
	Farmers group	Paired	Trained panel		
Burundi	Yes	No	No		
Ethiopia	Yes	No	No		
Rwanda	Yes		Yes		
Kenya	No	No	No		
Tanzania	Yes	Yes	Yes		
Uganda	Yes	No	Yes		

Objectives

Objective	Rwanda	Burundi	Ethiopia	Kenya	Tanzania	Uganda
SPVD resistance	Yes	Yes	No	Yes	Yes	Yes
Dry matter content	Yes	Yes	Yes	Yes	Yes	Yes
Weevil resistance	Yes	Yes	YES	Yes	No	Yes
Earliness	No	Yes	Yes	Yes	No	No

Status of breeding program [observation trial OT); advanced trial (AT); on-farm trial (OFT)

					Sweetpota	to Action for
Description / Country	Rwanda	Burundi	Ethiopia	Kenya	Tanzania	Uganda
a) Number of sweetpotato breeders	3	2	5	1	5	3
Staff time (a) (e.g., 1.0; 0.2. 0.5, 0.8)		0.2	1.8	0.2		1.0
b) Number of technicians	3		6	4	8	8
Staff time (b) (e.g., 1.0; 0.2. 0.5, 0.8)		0.3	3.0	1		1.0
Functional screenhouses (number)	4	0.1	1	1	2	3
Year last received botanical seed	2017	2017	2015	2013	2016	2017
Number of seeds received	????	95400	900	500	2,600	1300
Which country or countries sent the seed?		CIP Uganda & Mozambiq ue		Ugand a	Tanzani a	Mozambi que/Burki nafaso
Indicate number of clones from seedling selections from introduced seed in each stage (e.g. OT-456; AT-8; OFT -3)		OT-5086	OT=420 PYT = 210 in 5 categories	OT: 50, PYT; 25 AT; 12 OFT;5	PT 70 AT 12, UT 12, OT 7	1000

Status of breeding program – Data analysis SASHA Sweetpotato Action for Security and Health in Africa

Country	Program used for statistical analysis						
Country	Clone Selector	HIDAP	Genestat	R	SAS		
Burundi		Χ		Х			
Ethiopia			Х		Х		
Rwanda	Only for planting & seed preparation		X		Х		
Kenya	Χ		Х		Χ		
Tanzania	Χ	Χ					
Uganda		X	Х	Χ			

Sweetpotato trials/No. of clones planted last season 2017/2018

Trial	Country/No of clones						
	Burundi	Ethiopia	Kenya	Tanzania	Uganda	Rwanda	
Crossing block	33	-	0	20	73	12	
Observation trial	7,983	1	0	0	1,220	874	
Advanced trial	21	5	0	12	23	42	
On-farm	0	1	2	7	12	5	

Season (last) 2017/2018

					LUCE				
Trial		Country/Analysis							
	Rwanda	Burundi	Ethiopia	Kenya	Tanzania	Uganda			
Number of clones/parents in crossing block 2017/2018	12	33	-	-	20	73			
Observation (OT) – No. of clones	874	2897	420	0	0	1,220			
Preliminary yield (PT)- No. of clones	42	0	-		70	119			
Advanced yield (AT)	27	21	60	0	12	23			
On-farm		0	9	3	7	12			
No. of varieties released 2017	0	3	1	0	0	5			
No. of OFSP clones released in 2017	0	2	-	-	0	5			
No. of clones earmarked for release during 2018	3	6	-	8	0	2			
Number of clones with high potential for release in 2019	2	0	4	3	7	3			
No. of clones/varieties for 2017-2019 that have been cleaned up	2	0	6	8	0	0			
No. of clones/varieties for 2017-2019 that need to be sent for clean-up		2	4	10	9	8			

Funding source for sweetpotato breeding/Foundation seed activities

Source of funding /amount	Country/Amount					
	Burundi	Ethiopia	Kenya	Uganda	Tanzania	Rwanda
National program (breeding)	US 5 000	Х	0	15,000	NIL	\$12000
SASHA-II (Foundation seed)	US 35.706	х	15,000 USD	50,000	CIP	\$ 19,584
Others (Name them)	US 45 000	-	USAID Project	BMGF-PEARL (499,000) GT4SP (1,250,000)	BMGF	-
Stock/Foundation seed available (No. varieties)	1400000 (4 varieties)	4	3	5	5	14
Number of plants	280000	> 3000	2000	2000 cuttings	NIL	-
No. of varieties/clones in tissue culture	3	3	0	5	NIL	14
No. of functional Screenhouses/Net tunnels	1	11	1	3	2	4

List of projects and papers (published in 2017/2018)

On-going sweetpotato breeding projects (period, amount of funding, source): Ethiopia

- 1. National sweetpotato improvement program, 2017-2019, \$28,500
- 2. SASHA-II, 2015-2019, \$73,000

Journal /Workshop/ Conference papers

- **1. Fekadu Gurmu**, Hussein Shimelis, Mark Laing. 2018. Combining Ability, Heterosis and Heritability of Storage Root Dry Matter, Beta-Carotene and Yield-related Traits in Sweetpotato. HortScience 53(2):167-175.
- **2. Fekadu Gurmu**, Hussein Shimelis, Mark Laing. 2017. Correlation and path-coefficient analyses of root yield and related traits among selected sweetpotato genotypes. South African Journal of Plant and Soil, DOI: 10.1080/02571862.2017.1354405.
- **3. Fekadu Gurmu**, Hussein Shimelis, Mark Laing. 2017. Genotype-by-Environment Interaction and Stability of Sweetpotato Genotypes for Root Dry Matter, β-carotene and Fresh Root Yield. Open Agriculture (De Gruyter Open) 2:473-485.
- **4. Fekadu Gurmu**, Hussein Shimelis, Mark Laing. 2017. Evaluation of candidate orange-fleshed sweetpotato clones for nutritional traits. Acta Agriculturae Scandinavica, Section B Soil & Plant Science 67(7), 651-659.
- **5. Fekadu Gurmu**. 2017. Stability Analysis of Fresh Root Yield of Sweetpotato in Southern Ethiopia using GGE Bi-Plot. International Journal of Pure Agricultural Advances 1(1):1-9.
- **6. Fekadu Gurmu** and Shiferaw Mekonen. 2017. Registration of a Newly Released Sweet Potato Variety "Hawassa-09" for Production in Ethiopia. Agrotechnology 6(2):1-3.
- 7. Shiferaw Mekonen, Fekadu Gurmu and Tesfaye Tadesse. 2017. Evaluation of Elite Sweetpotato Genotypes for Resistance to Sweetpotato Virus Disease in Southern Ethiopia. International Journal of Advanced Research 5(7), 77-83.

List of projects and papers (published in 2017/2018)

oganda: On-going sweetpotato breeding projects (period, amount of funding, source)

- BMGF-PEARL Project (2014-2018) USD 499,000 BMGF
- **GT4SP Project** (2014-2018) USD 1,250,000 NCSU-BMGF

Journal /Workshop/ Conference papers.

- **1.Anyanga Milton** O., <u>Benard Yada, G. C. Yencho, Gorrettie N. Ssemakula, Agnes Alajo, Dudley I. Farman, Robert O. M. Mwanga, and <u>Philip C. Stevenson</u> 2017. Segregation of Hydroxycinnamic Acid Esters Mediating Sweetpotato Weevil Resistance in Storage Roots of Sweetpotato. <u>Front Plant Sci.</u> 8: 1011</u>
- **2.Sefasi Abel**, Marc Ghislain, Andrew Kiggundu, Gorrettie Ssemakula, Runyararo Rukarwa, Robert Mwanga, Jan Kreuze and Settumba Mukasa. 2017. Embryo-like structures and root regeneration induced by 2, 4dichlorophenoxyacetic acid in twenty African sweet potato cultivars. African Journal of Agricultural Research. 12(14): 1190 1195
- **3.Yada Benard,** Gina Brown-Guedira, Agnes Alajo, Gorrettie N. Ssemakula, Eric Owusu-Mensah, Edward E. Carey, Robert O.M. Mwanga and G. Craig Yencho. 2017. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato. Breeding Science Preview doi:10.1270/jsbbs.16089.
- 4. **Yada** Benard, Agnes Alajo, Gorrettie N. Ssemakula, Robert O.M. Mwanga, Gina Brown-Guedira, and G. Craig Yencho. 2017. Selection of Simple Sequence Repeat Markers Associated with Inheritance of Sweetpotato Virus Disease Resistance in Sweetpotato. Crop Science 57:1-10
- 5. **Yada** Benard, Agnes Alajo, Gorrettie N. Ssemakula, Gina Brown-Guedira, Milton Anyanga Otema, Philip C. Stevenson, Robert O. M. Mwanga, G. Craig Yencho. 2017. Identification of simple sequence repeat markers for sweetpotato weevil resistance. Euphytica 213:129. DOI 10.1007/s10681-017-1917-1

Journal /Workshop/ Conference papers Cont'd SAS

- 6. Ssemakula **Gorrettie**, Babirye Grace, Mirembe Joan, Musa Kpaka, Kiddo Mtunda, Manyong Victor, and Regina Kapinga (2017). Fast-tracking the Access to Improved and Popular sweetpotato Varieties by Small Holder Farmers through School Going Children in Uganda. Paper Presented at the ISTRC-AB conference, Dar es Salaam 5-10/3/2017 pg 318 book of abstracts
- 7. **Mwanga** R.O.M, R.N. Makumbi, M. Andrade, G.S. Makunde, J. Ricardo, J. Low, J. Kreuze, W.J. Grüneberg, G.N. Ssemakula, B. Yada, K. Adofo, E. Carey 2017. Rationale for sub-regional sweetpotato breeding in sub-Saharan Africa. Paper Presented at the ISTRC-AB conference, Dar es Salaam 5-10/3/2017 pg 137 book of abstracts
- 8. **Kiddo Mtunda,** Everina Lukonge, Gorrettie Ssemakula, Haji Saleh, Gration Rwegasira, Mary Yongolo, Stephen Merumba, and Geraldina Mushema (2017). Novel delivery strategies for improved sweetpotato varieties: Experience from the fast track the improved varieties. Paper Presented at the ISTRC-AB conference, Dar es Salaam 5-10/3/2017. Book of abstracts pg 309
- 9. **Kpaka** M.H., Manyong V., Mtunda K. Ssemakula G., Mirembe J. 2017. A phenotypic Approach to get better estimates for adoption rates of improved sweetpotato varieties, and predicting factors that influence farmer decision to adopt and intensify adoption: A logit and Tobit Model. Paper Presented at the ISTRC-AB conference, Dar es Salaam 5-10/3/2017. Book of abstracts pg 346

List of projects and papers (published in 2017/2018/

Rwanda: On-going sweetpotato breeding projects (period, amount of funding, source) NIL

Journal /Workshop/ Conference papers/ Thesis.

1. Damien **Shumbusha**, Hussein Shimelis and Mark Laing. 2018. Breeding Dual-purpose Sweetpotato [*Ipomoea batatas* (L.) Lam.] Varieties in Rwanda. PhD Thesis, University of KwaZulu-Natal, South Africa.

TANZANIA

List of projects and papers (published in 2017/2018; NIL

On-going sweetpotato breeding projects (period, amount of funding, source): **SASHA II-CIP** USD 4,500: RF TSHS:927,450, AYT, OT AND UYT-GOT.

Journal /Workshop/ Conference papers.

Rwanda: Challenges Faced and Your Thoughts for Addressing Those Challenges

- 1. proposal submitted to AGRA for funding/ But still pending
- 2. Joint proposal with Rice program submitted to IDRC-France

Ethiopia: Challenges Faced and Your Thoughts for Addressing Those Challenges

Problems	Solutions
 Drought, affecting trials and seed production 	 Install and maintain irrigation systems
Shortage of human capacity at NARS programs	 Long term and short term training / Hire breeders Service hub for molecular works
Low funding	Seek grants and advocate for more government funding
 Emerging non tradition pests: Fall army worm, e.g Uganda 	Surveillance, early warning, and Integrated Pest management strategies

Security and Health in Africa

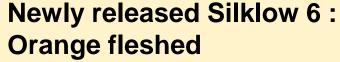
Two Photographs with captions showing achievements during past year- Uganda Sweetpotato Action for Security and Health in Africa

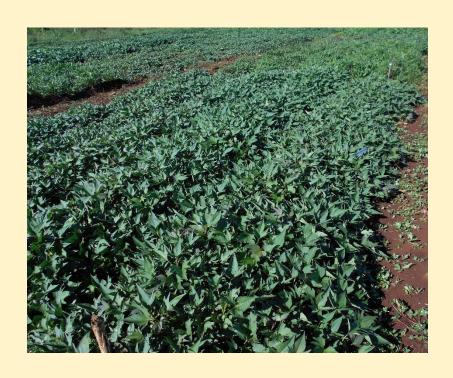
Sweetpotato root tasting of advanced lines during sweetpotato field day at AbiZARDI

Sweetpotato Breeding Trials at NaCRRI, Uganda: 2017

Two Photographs with captions showing achievements during past year: Ethiopia Sweetpotato Action for Security and Health in Africa

Planting of demo plots, Dilla, August 2017, Photo credit: Fekadu Gurmu


Harvesting of demo plots Dilla, August ,2017, Photo credit: Fekadu Gurmu



Cold tolerant, dual purpose national performance trials - Kenya Sweetpotato Action for Security and Health in Africa

Dual purpose, cold tolerant NPT trials

Two Photographs with captions showing achievants

during past year, Tanzania

Pre-basic seeds at ARI-Ukiriguru

Two Photographs with captions showing achievements during past year: Rwanda

Pic 1: Visit of Dr. Barbara Wells, DG CIP to the crossing block at RAB, Rubona, Rwanda.

Pic 2: One of the novel dual-purpose progenies selected and recommended for advanced clonal evaluation.