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Importance of selection in plant breeding

Systematic procedure for genetic improvement
through crossing plants with desired traits and
selecting progeny with improved performance
and/or improved combinations of traits.
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General steps in plant breeding (modified after Gepts 2002)




Phenotypic selection: Selection based on
appearance and performance
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DNA based selection methods

A. Marker-assisted selection: Selection
for one or more (up to 8-10) alleles

8. Marker-assisted backcrossing: One
or more (up to 6-8) donor alleles are
transferred to an elite line

c. Genome-wide selection: Selection of
several loci using genomic estimated
breeding values (GEBVSs) based on
genome-wide marker profiling
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Concept of Marker assisted selection

Molecular breeding

Association between molecular marker and causative gene
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ldentification of marker-trait associations
for selection

Genetic mapping

. EST sequencing
Genome sequencing

. Map-based cloning

Genetic mapping . Transcriptomics

Association mapping Proteomics

22l QUL el . Metabolomics

Trait c '
It correlations TILLING

Physical mapping

Adapted from Trends Biotech 24:490-499




Overview of marker-trait association via
QTL mapping
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Genotyping and phenotyping
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QTL analysis

Is there a significant link between genetic
makeup (genotype) and trait phenotype?

Single marker Analysis
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QTL mapping
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Results:

R M %inc in artemisinin
.Use Of MAS 60 - M %inc in leaf area
In hybrid
production

% Increase Above Artemis

The increase (%) in artemisinin concentration (in
blue) and leaf area (in red), over Artemis F1 for

seven hybrids produced from crosses of selected
high-yielding individuals.




Overview: Association mapping analysis
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Identification of marker-trait association via
Assoclation mapping

*The identification of marker alleles involved In
the inheritance of traits, also known as linkage
disequilibrium (LD) mapping

*Utilizes ancestral recombinations for
identification of marker and trait association
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Approaches for Association mapping

Candidate gene: Lower number of markers, based on
prior knowledge: expert opinion, linkage mapping results

Genome wide: High density of molecular markers
throughout genome

Genome wide

PEPPPLEIRV RV IRV VLV LVLHLLLLLL waners
| . m

Candidate Gene Markers

Choice of method depends mostly on how
fast linkage disequilibrium decays in the crop




The Multi-parent Advanced Generation Inter-
cross lines (MAGIC lines)

Complete Generations of 5-6 selfing
diallele intermating generations
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Quantitative traits are complex
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Complex traits and QTL and association
mapping

* Most of quantitative traits are controlled by
several genes, QTL and association mapping
will only allow identification of linked markers
that explain a small fraction of total genetic
variance

 Individual genes will have small effects and to
accurately estimate small effects, a large data
set Is needed (a large population to be
genotyped and phenotyped)



DNA marker technology coupled with
Next-Generation Sequencing (NGS)

Cost and throughput comparisons
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No. of plates: 756,000 120 3
Time: 48 years 6 months 2-3 weeks

Total cost:  $108 millions 1 million $60k

Cost/Mbase: $2,000 $18.5 $3




Predicting the phenotype: Genomic selection
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Predicting the phenotype: Genomic selection
vs traditional MAS
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Comparison of MAS and GS

Marker assisted selection (MAS)

Genomic selection (GS)
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Genomic selection vs. Traditional breeding
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Prediction Accuracy of Genomic Selection
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Factors affecting accuracy of GS:
Heritability of trait and population size
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Figure: For low-heritability traits, a very large
population size of training population will be required
in the to achieve high accuracies of GEBV in target
breeding population.
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Factors affecting accuracy of GS:
Relationship of training and validation population
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Critical considerations for success
of genomic selection

Phenotyping with special attention to Genotype X




Is breeding obsolete?

» Usually GMO techniques are used to manipulate
single gene that could also be easily manipulated using
marker assisted (conventional) breeding

» Marker-assisted breeding can manipulate multiple
traits simultaneously

» Marker-assisted breeding can manipulate genetically
complex “quantitative traits” with small effects---
traits that are influenced by the environment

» Marker-assisted breeding can bring about directed
changes (provided genetic variation exist for the trait
of interest)




Thank you for your attention!
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Look forward to collaborate on

dissecting genetic basis of

complex adaptation and abiotic
stress tolerance
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Next generation seguenced based

genotyping for Ipomea trifida (2x)
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Next generation sequenced based
genotyping for Ipomea trifida

~ 3 Million sequence reads in total = and ~1.3 are good reads
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