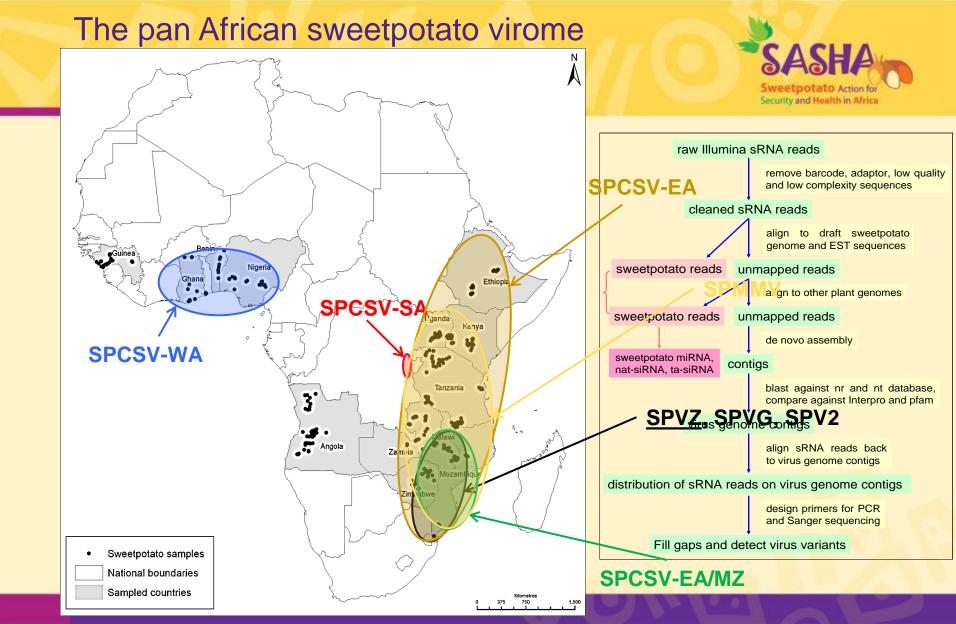
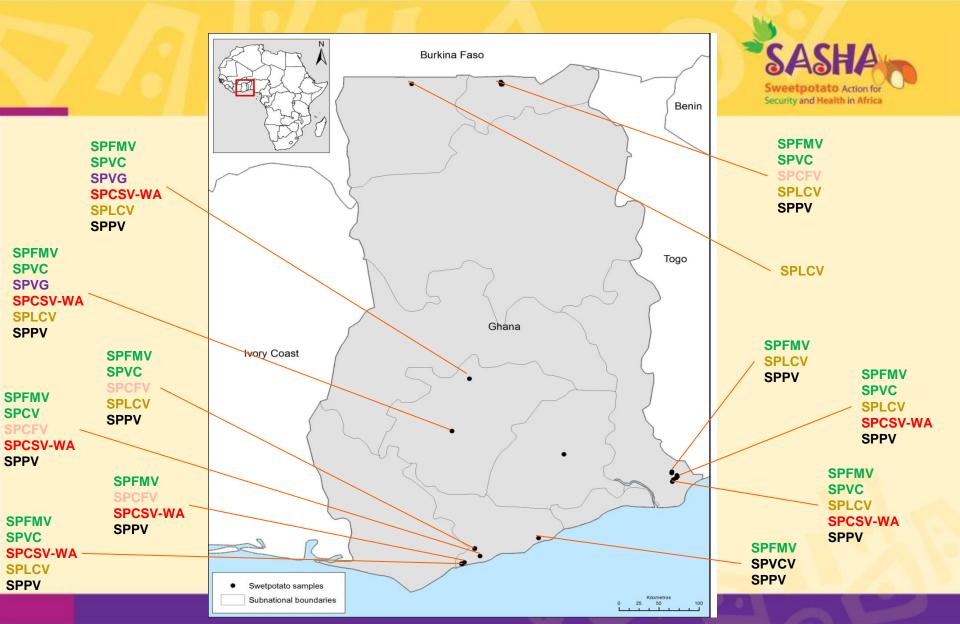
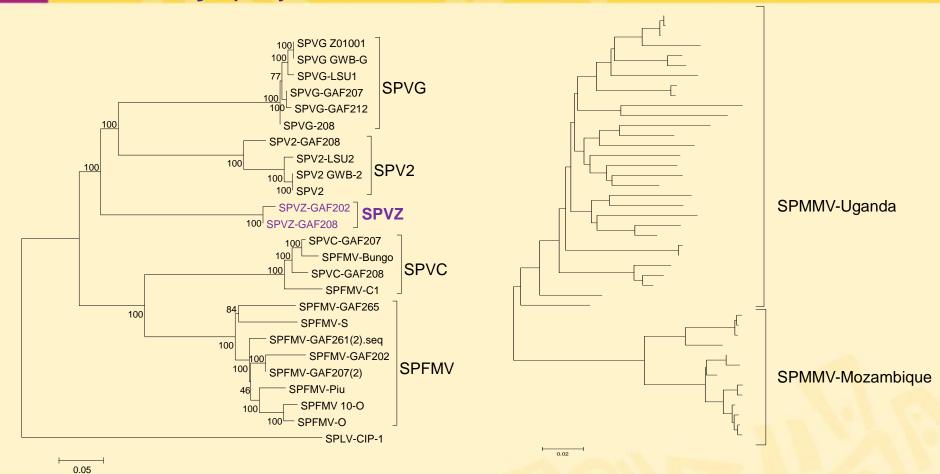
What we have learned about viruses in SSA and Progress to date on developing new tools for better & quicker virus assessment


SWEETPOTATO ACTION FOR SECURITY AND HEALTH IN AFRICA


Developing sensitive & robust virus detection methods

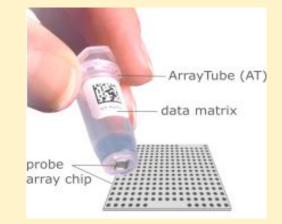
- Small RNA sequencing and assembly: towards universal viral diagnostics and sequencing
- Tube-arrays for sensitive detection of all viruses/pathogens of a crop at once (laboratory required)
- Field detection method with high sensitivity and ease of use
 -> LAMP

ecurity and Health in Africa



Mozambique:

sample		- Virus identified									
#	region	SPFMV	SPVC	SPVG	SPV2	SPMMV	SPCSV	SPCFV	SPLCV	SPPV	new
1	Angonia									Х	
2	Angonia	х								х	
3	Angonia	х	х							х	
4	Angonia	х	х		х	Х	х		х	х	
5	Angonia	Х	х	х			х		х	Х	SPVZ
7	Angonia	Х					х		х	Х	
8	Angonia	XX	XX	Х						Х	SPVZ
10	Angonia	Х							Х	Х	
14	Gurue										
15	Gurue	XX	XX		Х	XX	Х			Х	
17	Gurue	Х	х		Х	XX	х		х	Х	
18	Gurue	XX	х	Х	Х	XX				Х	SPVZ
19	Gurue	Х					Х			Х	
20	Gurue	XX	х	Х						Х	SPVZ
21	Gurue	х									
22	Gurue	х		х			х		х		
24	Gurue									Х	
25	Gurue	XX	х		х	XX	х			Х	
27	Gurue	х	х		х	х	х			х	
28	Maputo	XX							Х	х	
31	Maputo	XX			х	Х	х			Х	SPVZ
32	Maputo	XX	х	х					х	Х	SPVZ
33	Maputo	х	х		х	х			Х	х	
34	Maputo	х	XX			Х	х		х	Х	
35	Maputo	х					х			х	
36	Maputo	XX	XX	х		ХХ	XX			х	
37	Maputo	х	х	х					х	Х	
39	Maputo	х	х				х			Х	
41	Chokwe	XX	х	х		XX	х		х	х	
42	Chokwe	х	х	х		х	х		х	х	
44	Chokwe	XX	х	х		х		ХХ	х	х	
46	Chokwe	XX	х	х	х	XX	х		х	х	SPVZ, a
49	Chokwe	х				ХХ	х		х	х	
51	Chokwe	х	х	х		ХХ	Х		Х	х	SPVZ,a
55	Chokwe	XX				х	х		х	х	
66	TANZANIA	Х					X		X	X	


Variability: potyviridae

ClonDiag arrays for sweetpotato viruses:

- Mini microarray embedded in tube Up to 80 features
- One step labelling (biotin amp)
- Cheap scanner
- Manipulations in tube
- Benefit: many (all) viruses in one assay, sensitive (similar to PCR)

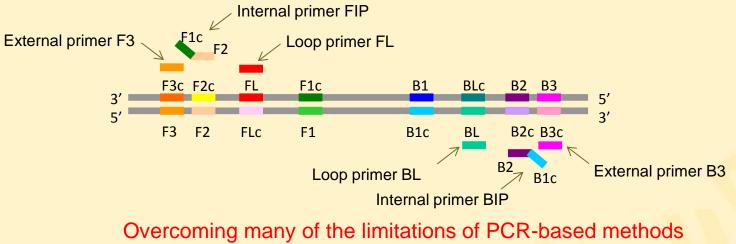
Comparison of 2nd iteration sweetpotato virus array and **small RNA sequencing**

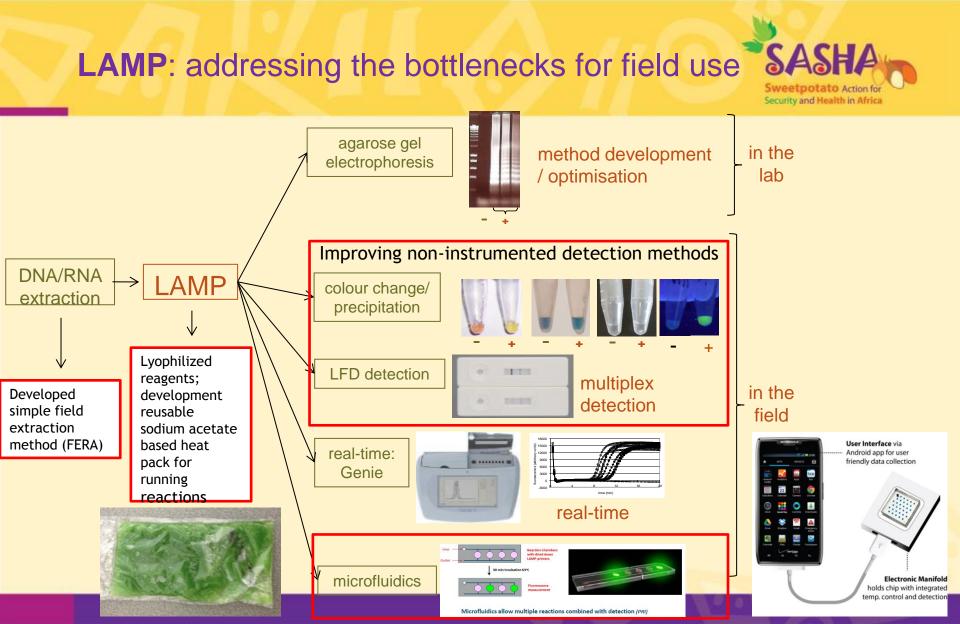
	Mozambique (30 isolates)	Ghana (20 isolates)				
SPCSV						
SPCFV						
SPMS						
SPCLV						
SPMMV						
SPLSV						
SPVG						
SPV2						
TSV						
Begomo						
SPFMV						
cmv						
plant 18S						
SP-rbcL						
neg-1						

Green=agreement Red = disagreement

Tube-array smartphone app for results analysis

- Image recognition and signal intensity analysis code ready, based on HTML5 standard
- First prototype version available (works through webbrowser, all platforms):
- http://hpc.cip.cgiar.org/clondiag/step/A.php


Evaluate against dedicated analysis software



Towards sensitive molecular field detection kits: SASHA LAMP

- Functions at a single temperature (no complicated and expensive thermal cycling equipment required)
- Enzymes more robust to contaminants & can be lyophilized (robustness for field conditions)
- 20-60 minute reaction time & more sensitive even than PCR

(cost and complexity of thermal cycling equipment)

Conclusions and recommendations for future research

- TubeArrays are performing well and may be a useful tool for distribution hubs
- Fast, sensitive and easy to use field based diagnostics is still a challenge, isothermal amplification most promising (and flexible) solution and should be further invested in
- NGS sequencing data will continue to contribute to improving and validating both LAMP and TubeArrays
- O Virus variability & distribution studies are helping us understand possible causes of differences in variety performance among regions

- Cuellar, W.J., Galvez, M., Fuentes, S., Tugume, J., Kreuze, J.F. (2014) Synergistic interactions of begomoviruses with sweet potato chlorotic stunt virus (genus *Crinivirus*) in sweetpotato (*Ipomoea batatas* L.). Molecular Plant Pathology, *in press*
- Gibson R, Kreuze J. (2014) Degeneration in sweetpotato due to viruses, virus cleaned planting material and reversion: a review. *Plant Pathology, Doi: 10.1111/ppa.12273*
- Boonham, N., Kreuze, J., Winter, S., van der Vlugt, R., Bergervoet, J., Tomlinson, J., Mumford, R. (2014) Methods in virus diagnostics: From ELISA to next generation sequencing. *Virus research* 186: 20-31 DOI 10.1016/j.virusres.2013.12.007
- De Souza, J., Fuentes, S., Savenkov, E.I., Cuellar, W, Kreuze, J.F. (2013) The complete nucleotide sequence of sweet potato C6 virus: a carlavirus lacking a cysteine-rich protein. Archives of Virology 158:1393-1396 DOI 10.1007/s00705-013-1614-x
- Clark, C.A., Davis, J.A., Abad, J.A., Cuellar, W., Fuentes, S., Kreuze, J.F., Gibson, R., Mukasa, S.B., Tairo, F., and Valkonen, J.P.T. (2012) Sweetpotato Viruses: 15 Years of Progress on Understanding and Managing Complex Diseases. *Plant Disease*, 96: 168-185 DOI 10.1094/PDIS-07-11-0550
- Cuellar, W.J., De Souza, J., Barrantes, I., Fuentes, S., Kreuze, J.F. (2011) Distinct cavemoviruses interact synergistically with sweet potato chlorotic stunt virus (genus *Crinivirus*) in cultivated sweet potato. *Journal of General Virology*, 92: 1233-1243 DOI 10.1099/vir.0.029975-0
- Cuellar, W.J., Cruzado, R.K., Fuentes, S., Untiveros, M., Soto, M., Kreuze, J.F. (2011) Sequence characterization
 of a Peruvian isolate of Sweet potato chlorotic stunt virus: further variability and a model for p22 acquisition. Virus
 research, 157: 111-115 DOI 10.1016/j.virusres.2011.01.010