

BREEDING SWEETPOTATO FOR HIGH BETA-CAROTENE, DRY MATTER CONTENT AND YIELDS IN BUIRKINA FASO

Somé Koussao, Ouedraogo Jeremy, Belem Jerôme, Asante Isaac, Vernon Gracen and Danquah Eric

30/06-04/07/2013

Sweetpotato production in Burkina Faso

Fig1. Evolution of sweetpotato production and yield from 2000 to 2011. (DGSPA, 2012)

- 412% increased of production from 27366 t in 2000 to 140,061t in 2011 mainly due to increase of production area
- However, yield over time has been unstable.
- \triangleright Cultivars used are mainly white flesh = low nutritional potential

USAID, 2003

81% of children an 64% of their mother suffered from VAD in rural BF

The objectives of this study were:

- To develop high yield and beta-carotene rich sweetpotato locally adapted and that meet farmers' and consumers' expectations
- 2) to estimate narrow sense heritability for economically and nutritionally important traits
- 3) to estimate the genetic gain from selection of the breeding product

MATERIALS AND METHODS

- Population development using 2 sets:
 - ✓ Local cultivars of white to yellow flesh: used as female parents: BF24, BF59, BF77, BF82 and BF92
 - ✓ Introduced OFSP (beta-carotene source) considered as male: CIP199062.1, Resisto, Tainung.
- Controlled crosses done at the INERA station of Kamboinsé from November 2009 to February 2010
- Standard crossing procedures for sweetpotato were applied

Field evaluation

- Established in three different agroecological zones
- ❖ 130 F1 progenies and their 8 parentsinvolved (Total = 138)
- ❖ In an Alpha Lattice design, The experiment was done from July to November 2010 and replicated in 2011

APA 2013 - 9th triennal conference - Naivasha-Kenya

Fig 2 and 3. Evaluation sites and field

DATA COLLECTION:

- > growth parameters:
 - ✓ vine length,
 - ✓ above ground fresh weight,
- and storage root parameters:
 - ✓ Yield components (number/plant, individual fresh weight and dry weight, weight per plant)
 - ✓ Dry matter content
 - ✓ Beta-carotene content

DATA ANALYSES:

- ✓ Narrow sense heritability (h²), was estimated from parent-offspring using the method described by Holland *et al.* (2003).
- ✓ The genetic advance was calculated according to Falconer and Mackay (1996)

APA 2013 - 9th triennal conference - Naivasha-Kenya

Fig 4. Data collection in the field

Table 1. F1 family average performance for storage root yield, DM and β -carotene

Family	RtYield	DM	BetaCar 0.048±0.043	
BF24xCIP	10.65±8.27	33.16±11.68		
BF24xResisto	11.38±7.76	27.90±6.51	0.024 ± 0.029	
BF24xTainung	10.73±6.68	28.25±7.25	0.036 ± 0.136	
BF59xCIP	13.19±6.79	27.59±9.22	4.625±4.125	
BF59xResisto	14.71±9.35	25.68±5.02	0.042 ± 0.054	
BF59xTainung	12.36±8.68	25.21±5.26	0.067 ± 0.060	
BF77xCIP	17.08±11.18	21.62±3.22	0.082 ± 0.057	
BF77xResisto	13.28±8.58	27.48±5.91	0.018 ± 0.024	
BF77xTainung	17.14±7.75	26.29±6.42	0.028 ± 0.039	
BF82xCIP	12.29±8.70	26.06±6.61	3.156±3.730	
BF82xResisto	6.97±6.76	27.30±6.88	0.082 ± 0.250	
BF82xTainung	13.79±9.35	23.31±6.60	0.717±1.978	
BF92xCIP	14.53±13.41	26.84±5.96	2.273±3.440	
BF92xResisto	12.70±8.29	24.73±6.21	0.945±2.849	
BF92xTainung 9th triennal o	conference - Naivasha-Kenya	28.20±3.57	0.0467.060	

Table 2. Comparison of parents and offspring mean performance and their significance

Generation	Rtyield	BetaCar	DM	Biomass	Rootnum	IRtwgt	VL
	(T/ha)	(mg/100g of	(%)	(kg/per	(Number	(g/plant)	(m)
		fresh root)		plot)	/plant)		
Offspring	12.83	0.89	26.22	15.05	2.96	134.23	1.70
P_{female}	8.26	0.28	29.61	7.15	2.58	97.15	1.43
F_{male}	11.45	3.27	27.93	7.47	2.95	130.62	1.01
Mid-Parent	9.86	1.77	28.77	7.31	2.77	113.87	1.22
% increase/MP	30.12	- 49.72	-8.86	105.88	6.86	17.88	39.34
$\%$ increase/ $P_{\rm f}$	55.33	216.73	11.45	110.49	14.73	38.17	18.88
All entries	***	ns	***	***	***	*	***
Offspring	***	***	***	***	***	***	***
Offsp.vs(Pf+Pm)	**	ns	***	***	ns	ns	***

^{*, **, ***} Significance of F at the 5%, 1% and 0.1% levels, respectively.

Table 3. Narrow sense heritability (h²) estimate per location and genetic advance from improvement

	Heritability estimate				
	Farakoba	Kouare	Loumbila	Combined	Genetic advance (%)
Storage root yield	0.20±0.25	0.58±0.25	0.58±0.32	0.21±0.16	5.85
Dry Matter	0.75±0.06	0.93±0.03	0.75±0.14	0.76±0.003	22.60
Beta-Carotene	0.43 ± 0.63	0.49 ± 0.44	0.97 ± 0.02	0.90±0.039	3.37
Biomass yield	0.58 ± 0.18	0	0.05 ± 0.42	0.04±0.07	7.81
Root number per plot	0.62 ± 0.44	0.52±0.38	0.57±0.27	0.41±0.21	8.03
Individual Root weight	0.69 ± 0.14	0	0.55±0.34	0.27±0.12	6.35
Vine Length	0.33±0.42	0.57±0.28	0.16±0.07	0.48±0.28	0.26

The Best OFSP F_1 genotypes that had significantly higher yield than the best check (Caromex with 11.50 t/ha)

Genotypes	Root yield	Upgr	B-carotene	Virus2	DM%	Irwgt
	(t/ha)	BiomYield	(mg/100g of			
		(t/ha)	fresh weight)			
BF82xTainung-8	20.33	16.33	0.48	2.33	23.2	179.15
BF82xTainung-20	19.67	17.23	0.78	3.33	21.82	242.68
BF82xCIP-17	18.56	14.78	3.92	1.17	28.45	118.18
BF80xTainung-2	18.11	11.89	2	2.33	19.27	203.89
BF82xTainung-24	17.83	25.89	8.29	1	21.79	136.43
BF92xCIP-6	17.11	17.83	6.44	1.83	26.61	175.9
BF59xCIP-4	16.78	21.56	8.32	1.83	24.81	116.15
BF24xTIB-3	16.17	17.28	7.66	2.67	27.33	116.72
BF59xTIB-6	15.22	11.39	4.36	2.33	21.48	275.94
BF82xCIP-18	15.22	30.11	2.32	1.5	22.81	186.07
BF59xCIP-1	13.56	18.33	8.32	1.17	27.09	110.82
BF82xTIB-4	13.5	10.33	1.03	2.17	30.06	145.36

OFSP BF82xTainung.8 (20.33 t/ha)

OFSP BF92xCIP.6 (17.11 t/ha)

APA 2013 - 9th triennal conference - Naivasha-Kenya

WFSP BF59xTainung.5 (54.67 t/ha)⁰¹³

