

Genomics-Assisted Sweetpotato Improvement: Strengthening the Speedbreeders CoP

Progress to date....

Craig Yencho¹ and Godwill Makunde² North Carolina State University¹ and CIP-Mozambique²

> 7th Annual SPHI Technical and Steering Committee Meeting ILRI Campus Addis Ababa, Ethiopia October 7-9, 2016

NC STATE UNIVERSITY

Craig Yencho, Lead Pl Ann Tomko, Program Coordinator Bode Olukolu, Molecular Breeding Ken Pecota, Breeder Luis Duque, Breeder, Data capture Sharon Williamson, Research Specialist Bonny Oloka, PhD Student, Uganda Victor Amankwaah, PhD Student, Ghana

Zhao-Bang Zeng (CoPI) Statistics/QTL/GS Guilherme Da Silva Pereira (Postdoc) Marcelo Mollinari (Postdoc)

Lina Quesada (coPI) Pathology

🖕 MICHIGAN STATE UNIVERSITY

Robin Buell (coPl) Genome Browser John Hamilton, Bioinformatics Engineer Jeongwoon Kim, Postdoc Grant Godden, Postdoc Krystle Wiegert-Rininger, Research Associate

Zhangjun Fei (coPI) Sequencing Lukas Mueller (coPI) Database Development Alex Obgona, Postdoc Shan Wu, Postdoc Alex Ogbonna, Postdoc, Database Development Bryan Ellerbrock, Database Development

GENOMIC TOOLS FOR SWEETPOTATO IMPROVEMENT

biosciences eastern and central africa

CIP Lima

Awais Khan, (coPI) Geneticist, Molecular Breeding Wolfgang Gruneberg, SP Breeding, Global Lead Merideth Bonierbale, Progam Leader Jan Kreuze, Virologist Reinhard Simon, Database Development Raul Ezaguiere, Statistician Dorcas Gemenet, Postdoc, Molecular

CIP SSA

Marc Ghislain, (coPI) Global Biotechnology Lead Ted Carey, SP Breeding, Ghana, West Africa Robert Mwanga, SP Breeding Uganda, East Africa Luka Wanjohi, Database Development, Website Mercy Kitavi, Postdoc, Molecular Breeding, Capacity Development

Benard Yada, (coPI) Breeder Gorrettie Ssemakula, Breeder Milton Otema Anyanga, Entomologist

Lachlan Coin (coPl) Chenxi Zhou, PhD Student, China

Marian Quain, Biotechnology, TC

Sweetpotato Convening A Vision for Sweetpotato Improvement in Africa:

Modern Breeding Tools Increased Potential, Improved Genetic Gain, Reduced Hunger and Poverty

> Bill & Melinda Gates Foundation Seattle, WA June 3-5, 2013

The Genomic Tools for Sweetpotato Improvement Project – GT4SP

Scope

- Est. Sep. 2014
- 20 Pl's
- 7 Institutions
- 6 Countries
- 4 Continents
- 15 Time Zones
- 1 Crop
 - \$12.4 M

BILL& MELINDA GATES foundation

A "Vision" for MAB Breeding in SSA

Breeding pipeline investments should include:

- Genomic Resources
 - A reference genome
 - Marker development we are way behind the curve....
 - A robust set of SNP markers and a low-cost genotyping platform
 - Advanced laboratory sequencing linked with developing country phenotyping and breeding activities
 - 2x and 6x mapping, training and test populations
- Phenotyping, analytics and database resources
 - Improved phenotyping options
 - Web-based bioinformatic resources
 - New database, data collection and analysis resources
- Human Resources and Capacity Development
 - Continue to develop a dynamic team of breeders and allied disciplines
 - Training in the use of traditional and genomic breeding methods
 - Effective communication and collaboration
 - Multi-institutional training and capacity development
- A common vision and continuity of effort.
- A stellar team to implement phase 1 !!

The Genomic Tools for Sweetpotato Improvement Project – GT4SP

Sweetpotato Genome (MSU, BTI, CIP) Bioinformatics (NCSU, UQ, CIP)

Genotyping by Sequencing (NCSU, UQ, CIP, BTI)

Sweetpotato Database: Bioinformatics, Phenotyping & Genomics (CIP, MSU, BTI, NaCCRI)

Sweetpotato Breeding & Capacity Development (NCSU, CIP Peru, CIP Uganda, <u>CIP Ghana, CIP at BecA</u>)

An ambitious project to sequence sweetpotato and develop modern breeding tools for a food crop that sustains million of people in SSA.

Collaborators: Boyce Thompson Institute at Cornell, Michigan State University, University of Queensland, Australia; The International Potato Center, Peru; BioSciences East and Central Africa, Kenya; National Crops Resources Research Institute, Uganda; Crops Research Institute, Ghana

GT4SP

Start-Up, San Diego Jan. 2015

> 1st Annual Mtg. San Diego, Jan. 2016

T

mi

NC STATE

1st Annual SASHA-GT4SP Joint Meeting, Mukono, Uganda

NC STATE UNIVERSITY

IMPROVEMENT

2nd Annual SASHA-GT4SP Joint Meeting, CIP-ILRI, Nairobi, Kenya

15th SPHI Sweetpotato *Speed*Breeders Annual Meeting 6-7 June 2016 Workshop BecA-ILRI Research Platform, Nairobi, Kenya *Theme: An eye opener in planning the integration of molecular markers in sweetpotato breeding programs*

	markers in sweetpotato breeding programs	POR SWEETFORMO IMPROTENENT		
Time	Activity/Session	Responsible		
June 5	Arrival	Tassy Kariuki		
June 6	Day 1, Monday			
7:30 am	Registration	Tassy Kariuki		
	Chair: Dr. Edward Carey	Note taker: Dr. Bode Olukolu		
8:00 am	Welcome note from the BecA-ILRI hub Director, and SASHA Leader	Dr. Appolinaire Djikeng, Dr. Jan Low		
8:30 am	Keynote Address Genomics-assisted sweetpotato improvement: Hope or hype?	Dr. Craig Yencho		
9:30 am	Genetic diversity studies of the sweetpotato using DNA markers: what have we learnt?	Dr. Marc Ghislain		
10:10 am	Health Break	Tassy Kariuki		
10:30 am	Basics of marker-assisted selection/breeding and its potential use for sweetpotato improvement	Dr. Awais Khan		
11.10 am	Accurate sweetpotato phenotyping of agronomic traits; why it is important for MAS	Dr. Awais Khan & Bramwel Wanjala		
12:00 pm	Sweetpotato genotyping procedures for SSA (recorded video/ppt)	Dr. Mercy Kitavi		
12.30 pm	Lunch break	Tassy Kariuki		
2:00 pm	BecA lab tour facility; An advantage in SSA what is available and how the sweetpotato community can make use of it regarding the incorporation of molecular procedures in their breeding programs	Dr. Mercy Kitavi		
3:00 pm	Laboratory practical exercise DNA extraction from sweetpotato roots and leaves Assess DNA quality & quantity PCR preparation (markers assays)	Dr. Dorcus Gemenet Dr. Mercy Kitavi Dorcah Ndege		
4:00 pm	Health Break	Tassy Kariuki		
4:30-6.00 pm	Laboratory practical exercise – continued	Dr. Dorcus Gemenet Dr. Mercy Kitavi Dorcah Ndege		

Genomics-Assisted Sweetpotato Improvement Workshop (day 2)

June 7	Day 2, Tuesday	
8:00 -8.30 am	Briefing session	Dr. Dorcus Gemenet & Dr. Mercy Kitavi
8:30 am	Practical exercise – Clone identification, germplasm fingerprinting, parent selection & Genetic diversity analysis using SSR data	Dr. Mercy Kitavi
10:00 am	Health Break	Tassy Kariuki
10:20 am	Practical exercise – Sweetpotato QTL mapping	Dr. Dorcus Gemenet
12:30 pm	Lunch Break	Tassy Kariuki
2:00 pm	Practical exercise – Genome wide maps; SNP marker development in hexaploid sweetpotato using Genotyping by sequencing (GBS)	Dr. Bode Olukolu
4.00 pm	Health Break	Tassy Kariuki
4:20 pm	What do we know about the <i>Ipomoea</i> genome and how can this be used in breeding improved sweetpotato varieties?	Dr. Robin Buell
5:00 pm	Discussions/Consultations and AOB	Dr. Mercy Kitavi
5:30 pm	End	

On-Site Capacity Building

- Mercy Kitavi visited and trained staff in Uganda and Ghana – between July and August 2016
- Pending visit to Mozambique
- Several webinars conducted and pending
- Posted on SweetpotatoKnowledgePortal

SSA NARS Genomic infrastructure

- Basic molecular genetic facilities exist among most NARS partners, but not all.
- Sequencing capabilities generally not available.
- Computational and bioinformatics capabilities lacking.
- Biosciences Eastern and Central Africa (BecA-ILRI Hub) – a key partner.
 - Africa Biosciences Challenge Fund 3 GT4SP fellows identified

Major Accomplishments

Two Diploid Reference Genomes for Sweetpotato – A first...

Dr. Zhangjun Fei

Ι.	trifida
N	CNSP-0306

NCN5P-0306						
	Scaffold*	r	Contig			
	Size (bp)	Number	Size (bp)	Number		
N100 (Shortest)	500	30,343	1	44,841		
N90	23,196	984	4,204	10,947		
N80	212,487	311	14,711	5,596		
N70	518,084	179	28,599	3,494		
N60	911,096	112	45,660	2,303		
N50	1,480,604	72	65,826	1,516		
N25	3,646,777	21	155,697	414		
N00 (Longest)	16,580,315	1	1,067,799	1		
Total	Total 462,089,635		433,252,193	44,841		
*Scaffolds >= 500k			82.3%			
87.8%						

Estimated genome size: 526.5 Mb

I. triloba NCNSP-0323

	Scaffold	*	Contig	
	Size (bp)	Number	Size (bp)	Number
N100 (Shortest)	500	4,018	1	31,277
N90	2,012,206	76	8,536	12,672
N80	2,667,000	57	15,561	8,955
N70	3,686,450	42	22,163	6,606
N60	4,855,166	32	29,383	4,891
N50	6,461,009	24	36,931	3,562
N25	9,551,788	9	61,831	1,252
N00 (Longest)	19,833,707	1	313,171	1
Total 457,090,054		4,018	437,557,497	31,277
*Scaffolds >= 500b	p are included 92.2%		88.2%	

Estimated genome size: 495.9 Mb

Diploid Ipomoea v1 Assembly Annotation Summary

Annotation after final MAKER run and functional annotation assignment:

Structural Annotation Summary:

Functional Annotation Summary:

	I. trifida	I. triloba
Number of Gene		
Models:	34,277	34,122
Avg Gene Length:	3,527.3	3,835.22
Avg Transcript Length	1,462.7	1,530.4
Avg CDS Length:	1,319.8	1,391.4
Avg Exon Length:	263.8	259.9
Avg Intron Length:	456.2	473.4
Single Exon		
Transcripts:	11,412	9,798

• Locus Name Assignment:

CHIGAN STATE UNIVERSITY

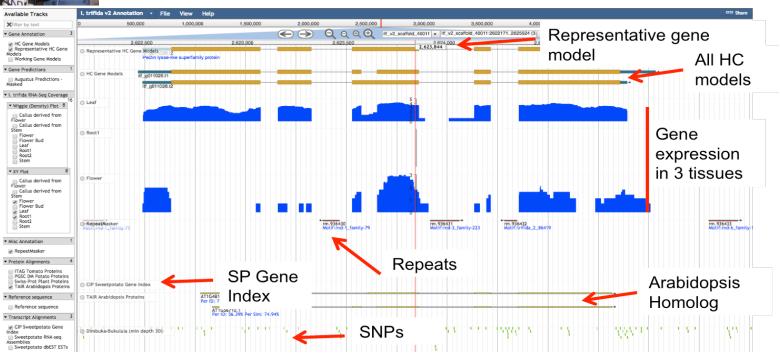
- *I. trifida* locus name: v1_itf_[GT]000000
- *I. triloba* locus name: v1_itb_[GT]000000

	I. trifida	I. triloba
TAIR	27,549	26,751
PFAM	1,296	1,218
Swiss-Prot	318	328
Conserved		
Нуро.	1,439	1,457
Hypothetical	3,675	4,368

The Arabidopsis Information Resource (TAIR) Protein Families Database Swiss Protein Database

Sweetpotato Genomics Resource

http://sweetpotato.plantbiology.msu.edu/


RNAseq Annotation

I. trifida (NCNSP-0306) and I. triloba (NCNSP-0323)

Accession	Library	Raw	1	Cleane	d	mapped		
Accession	Library	No. pairs	length	No. pairs	length	No. mapped	%	
	Callus from flower	21,848,047	151	21,003,512	140	18,231,691	86.8	
	Callus from stem	19,079,976	151	18,295,387	141	15,985,394	87.37	
	Flower bud	9,983,745	151	9,466,255	142	8,028,621	84.81	
	Flower	16,243,164	151	14,485,548	141	11,942,268	82.44	
l. trifida	Leaf	16,460,756	151	15,594,184	140	13,765,383	88.27	
	Root1	10,371,929	151	8,620,931	145	6,890,570	79.93	
	Root2	11,330,169	151	9,333,983	143	7,505,456	80.41	
	Stem	13,732,963	151	13,213,076	136	11,521,863	87.2	
	Total	119,050,749	151	110,012,876	141	93,871,246	85.33	
	Flower bud	14,805,985	151	14,179,939	140	13,665,688	96.37	
	Flower	15,722,899	151	13,559,219	143	12,318,763	90.85	
	Leaf	17,295,636	151	16,652,971	139	16,107,108	96.72	
l.triloba	Root1	12,626,254	151	10,903,081	142	7,681,265	70.45	
	Root2	10,380,650	151	9,090,481	144	8,422,508	92.65	
	Stem	22,110,610	151	21,160,167	140	19,950,834	94.28	
	Total	92,942,034	151	85,545,858	141	78,146,166	91.35	

Diploid *Ipomoea* Genome Annotation: Jbrowse Genome Browser – A first...

Robin Buell

Tracks available on the Jbrowse:

- Genome Annotation (Loci, Gene Models)
- Gene Predictions (Augustus, SNAP, FGENESH)
- MAKER Transcript Evidence

MICHIGAN STATE UNIVERSITY

- MAKER Protein Evidence
- CIP Sweetpotato Gene Index Alignments

- RNA-Seq Coverage Wiggle
- RNA-Seq Coverage XY
- I. trifida 0431-1 SNPs

Sweetpotato Genomics Resource

http://sweetpotato.plantbiology.msu.edu/

Genotyping-by-Sequencing

Strategy: Optimized enzyme and fragment size selection for SP

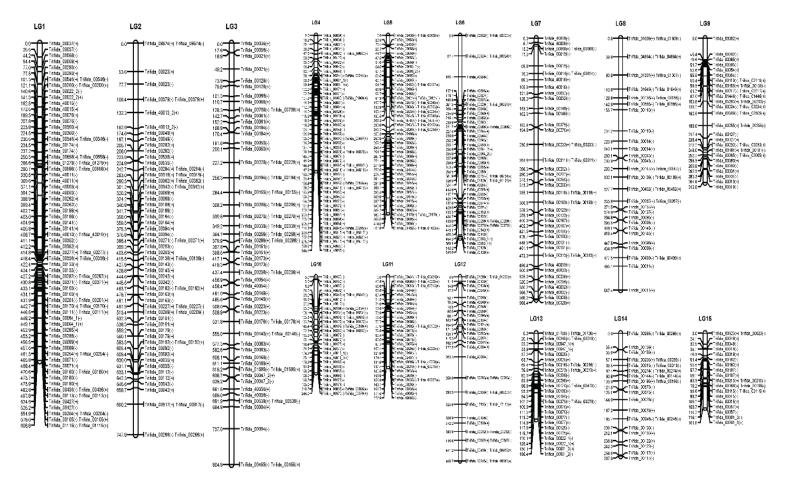
Optimal # of fragments/SNPs:

- low density (genetic map)
- high density (GWAS/GS)

Cost effectiveness:

- exclude repeat regions
- unusable for SNP calling
- methylation sensitive enzyme

DArTseq for hexaploid sweetpotato: **B x T mapping population**

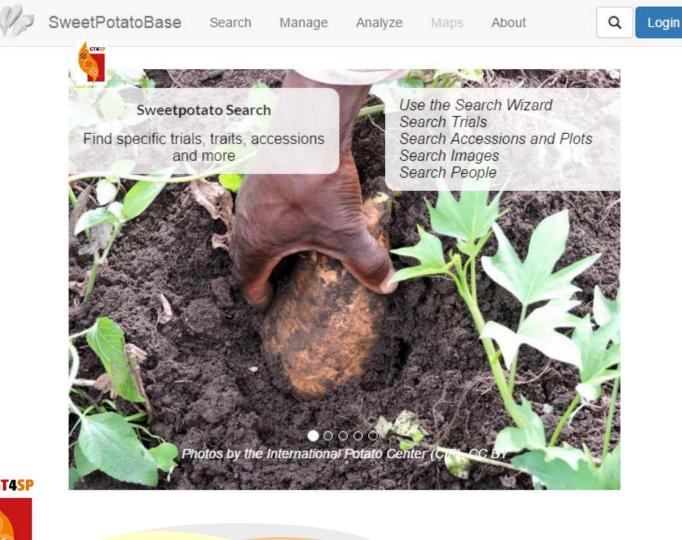

33,086 SNPs identified in BT population

After quality analyses, 11,091 SNPs mapped on 95 linkage groups.

		Number of Markers	Max Length (cM)	Average Interval (cM)	Max Interval (cM)		Linkage Groups	Number of Markers	Max Length (cM)	Average Interval (cM)	Max Interval (cM)
	1	332	86.93		6.67		51	81	68.63	0.86	11.32
CNIDe identified	2	182	81.91		5.19	_	52	82	57.55	0.71	12.22
SNPs identified	3	165	83.72		8.99		53	85	70.77	0.84	16.23
	4	158	103.54		13.33	_	54	80	49.01	0.62	7.84
pulation	5	171	84.84		17.29	_	55	153	56.28	0.37	5.80
pulation	6	239	83.66		5.66		56	197	94.69	0.48	7.40
-	7	160	64.27		9.70	_	57	94	77.16	0.83	17.67
	8	222	58.97		2.96	_	58	208	98.44		9.63
	9	362	97.22		10.45	_	59	163	66.03	0.41	5.22
ality analyses	10	147	70.70		12.08		60	198	74.01	0.38	9.12
ality analyses,	11	389	117.02		10.01		61	90	51.53		9.51
	12	272	73.19		10.46		62	72	46.00	0.65	9.85
SNPs mapped	13	149	76.79		6.32		63	74	76.09	1.04	20.74
Sivi Sinapped	14	132	85.74		10.00	_	64	70	54.15	0.78	13.49
	15	227	69.20		5.97		65	67	51.29	0.78	13.70
nkage groups.	16	138	82.34		11.48	_	66	143	61.32	0.43	15.25
	17	249	79.19		4.81		67	70	70.64	1.02	18.15
	18	139	71.28		6.67		68	53	55.00	1.06	18.96
	19 20	118	90.27		15.56		69	63	55.34	0.89	13.15
		337	81.53		6.67		70	58	43.96	0.77	10.49
	21	130	86.83		12.96		71	52	32.38	0.63	11.11
	22 23	163 98	67.23		10.69 7.78		72	49	45.37	0.95	10.07
	23 24	98 137	68.77		4.83	-	73	64	36.87		5.93
	24 25	137	61.31 83.22		4.83 14.23		74	45	23.05	0.52	4.07
	25 26	322	61.09		2.82	-	75	49	32.40	0.67	9.29
	26	116	66.81		8.58		76	95	42.08	0.45	4.51
	27	113	68.76		0.50 11.52	-	77	40	28.53	0.73	6.67
	28	276	85.92		8.55		78	30	52.00	1.79	16.60
	30	136	47.51		5.19	-	79	40	49.53	1.27	11.28
	31	112	65.36		7.14		80	30	15.19	0.52	3.33
	32	218	70.50		3.73		81	31	9.32	0.31	1.85
	33	182	70.30		6.69		82	25	27.99	1.17	16.00
	34	201	60.85		5.58		83	21	20.13	1.01	3.70
	35	92	74.59		8.24		84	24	15.67	0.68	5.24
	36	91	87.65		12.96		85	27	14.20		3.72
	37	102	63.50		13.36		86	26	11.52	0.46	3.70
	38	90	83.62		14.44		87	15	17.88	1.28	5.19
	39	95	62.93		6.72		88	15	9.48	0.68	5.73
	40	98	72.47		21.48		89	12	8.28		1.90
	41	104	66.17		19.26		90	11	19.96	2.00	6.74
	42	225	63.80		4.81		91	17	4.12	0.26	1.49
International	43	106	63.67		8.89		92	13	3.41		1.91
memational	44	93	55.35		5.53	1	93	16	4.08	0.27	1.48
	45	84	59.75		5.93	1	94	8	5.31	0.76	2.33
Potato Center	46	75	56.51		6.72	-11	95	12	5.59	0.51	2.96
	47	89	70.81		14.98	Total	95	11091	5504.06		
	48	80	69.24		11.28	Max		389	117.02		21.48
	49	80	74.61		20.74	Min		8	3.41		
	50	106	59.21		15.36			-	0.7A		

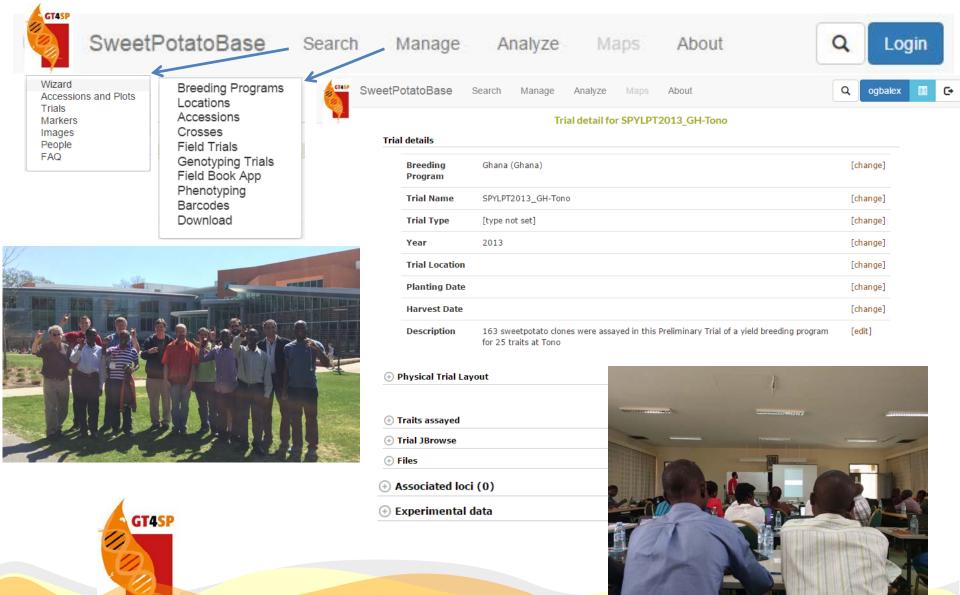
High-density genetic map of the *I. trifida* CIP *M9 x M19* mapping population.

Map was made using GBS data generated by Bode Okulu at NCSU on 212 progeny plus 2 parents in a F1 cross of M9 X M19. This map indicates the position of the scaffolds obtained from the Trifida assembly. Only the starting and ending position of each scaffold is shown (indicated with + and – respectively). As a result some apparently large gaps greater than 50cM are long scaffolds. Where scaffolds have been split, this is indicated using _1 and _2 to indicate the split scaffolds.

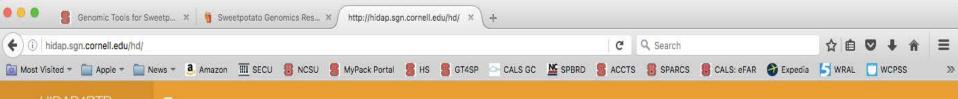


GT4SP Mapping Populations

- M9 x M19 Diploid I. trifida
 - 212 clones
- Beauregard x Tanzania (BT)
 - 316 clones
- Tanzania x Beauregard (TB)
 - 247 clones
- New Kawogo x Beauregard (NKB),
 - 287 clones
- Mwanga Diversity Population,
 - 8 x 8 mating design,
 - 1,920 clones
- Multi-location, multi-year phenotyping in Peru, USA, Ghana and Uganda



BTING Managing Phenotypic Data Dr. Lukas Mueller SweetPotatoBase and FieldBook App.



Meeting the Data Management Needs

SweetpotatoBase

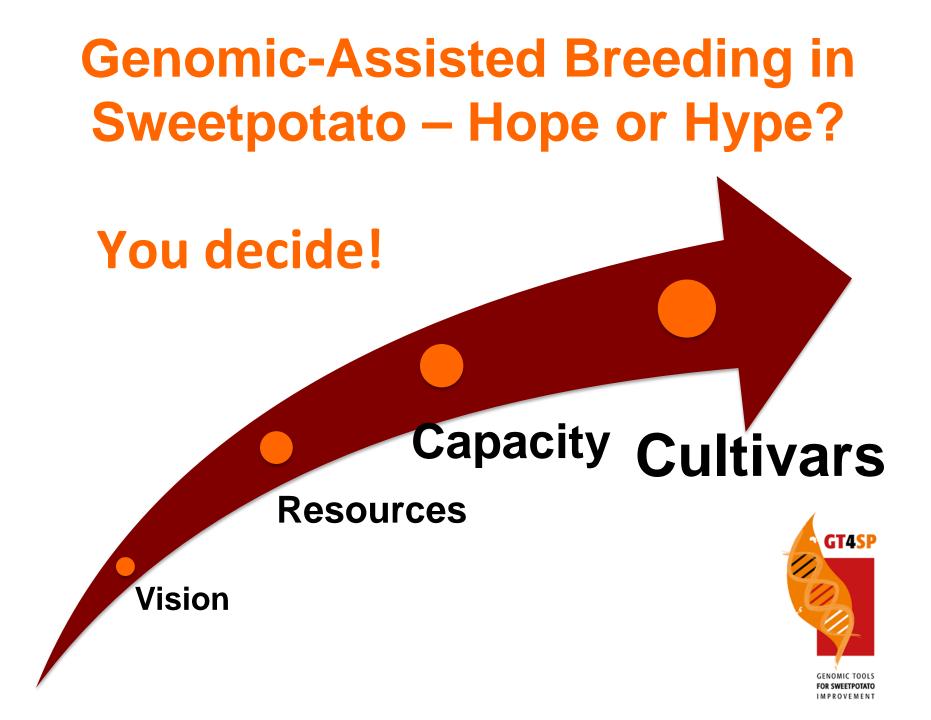
HIDAP4RTB

Highly Interactive Data Analysis Platform for Clonal Plant Breeding

HIDAP v1.0 [07/06/2016]

HIDAP is a tool designed to help breeders of clonal plants (likw potato and sweetpotato) carry out field trial planning, documentation, analysis and reporting.

International Potato Center (CIP)


What's needed and how do we get there? Lesson's Learned -

Reference genome(s)

- A sequence-based genotyping platform
- Breeder friendly bioinformatics and analytical environments
 - This is easier said than done! What will this look like?
 - Special needs for clonally propagated, polyploid crops?
 - Assured technical support to breeders required
- Populations (QTL mapping and GWAS) We're breeders....no worries
- Improved phenotyping and data collection capabilities including mechanization equipment...
- Sustained funding multiple sources (NGO, Gov., private industry)
- Sustained capacity development people, institutional, programs, farmers, industry – all are critical.

For more information see: SweetpotatoGenomics.CALS.NCSU.edu

Acknowledgements

BILL& MELINDA GATES foundation

