# Sweetpotato Speedbreeders Progress in developing a low sweet sweetpotato for West Africa

### **INTRODUCTION**

The signature focus of the Sweetpotato Support Platform for West Africa, in Ghana, is on quality, specifically developing low sweet varieties for staple, processing, and other uses.

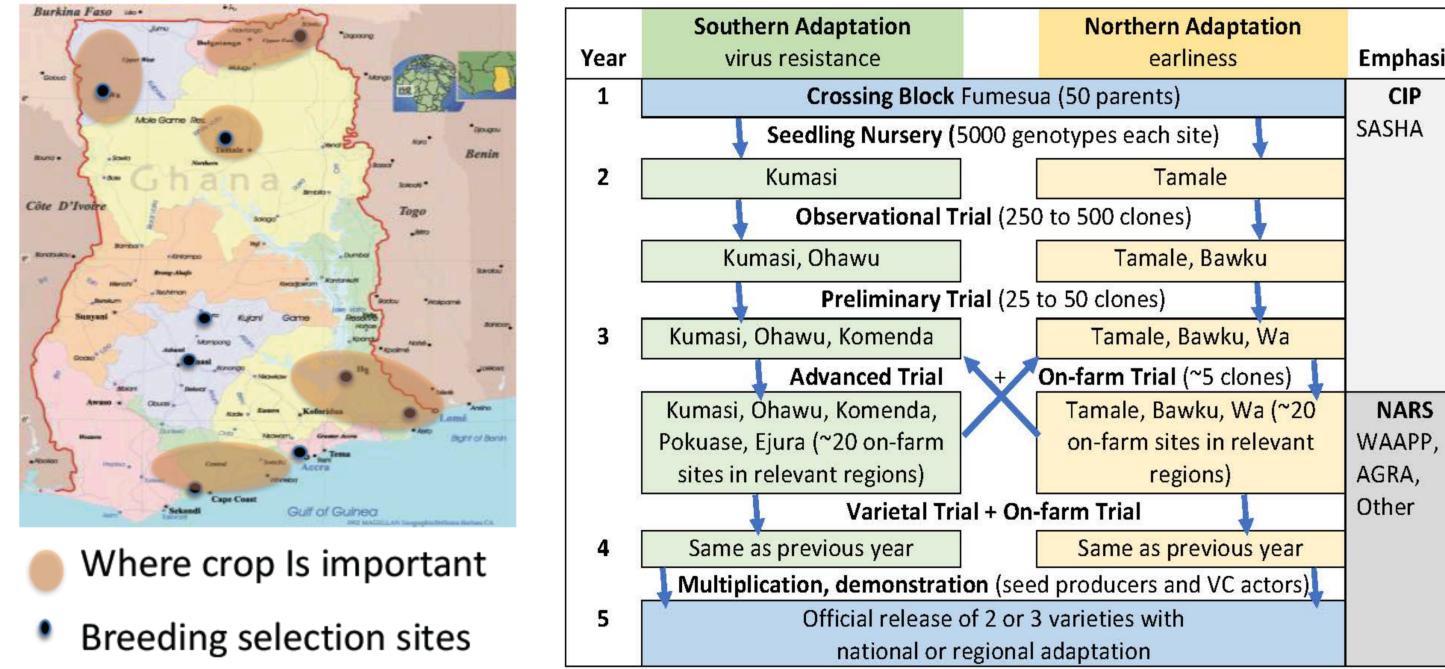

- Ghanaian breeding program active since 1990s
- Sweetpotato is less important here than many parts of E. and S. lacksquareAfrica, but it is increasing in importance
- Must have lowland tropical adaptation (virus resistance in southern ulletzones; earliness in northern zones). Drought tolerance is desirable.
- Sweetpotato quality (including sweetness) is affected by genotype,
- On fresh weight basis, SE values of all raw and cooked samples were non-sweet, with changes in SE between cooked and raw samples ranging from 0 to 5% (Table 2, tier 2)
- The checks (Apomuden, Bohye and Ligri) were ranked as sweetest by taste panelists, Ligri and Bohye had the best taste, while Apomuden had highest Aroma. PGA14351-4, with lowest sweetness and aroma scores, was not ranked high on taste (Table 2, tier 3)

Table 2. Sucrose equivalent (SE) of raw and cooked sweetpotato clones on dry weight (tier 1) and fresh weight (tier 2) basis, and sensory assessment of sweetness, liking and aroma (tier 3)



cooking method, and postharvest treatment

- Previous work has shown that consumers like most of our lacksquareadvanced selections, but we are still refining our understanding of quality attributes required, and the most efficient method for phenotyping
- We routinely use NIRS on raw, freeze dried samples, and cooked  $\bullet$ taste tests
- We used NIRS and taste tests on raw and cooked samples from an  $\bullet$ advanced trial to characterize selections, and tested use of refractometer as a faster throughput method



|      | Southern Adaptation                 |           | Northern Adapt        | tation  |          |  |
|------|-------------------------------------|-----------|-----------------------|---------|----------|--|
| Year | virus resistance                    |           | earliness             |         | Emphasis |  |
| 1    | Crossing Block                      | Fumesu    | a (50 parents)        |         | CIP      |  |
|      | Seedling Nursery (5                 | 5000 ge   | notypes each site)    | +       | SASHA    |  |
| 2    | Kumasi                              |           | Tamale                |         |          |  |
|      | Observational T                     | rial (250 | ) to 500 clones)      | ţ       |          |  |
|      | Kumasi, Ohawu                       |           | Tamale, Baw           | ku      |          |  |
|      | Preliminary Ti                      | rial (25  | to 50 clones)         | 1       |          |  |
| 3    | Kumasi, Ohawu, Komenda              |           | Tamale, Bawku         | , Wa    |          |  |
|      | 👃 Advanced Trial                    | +         | On-farm Trial (~5 clo | ones) 👃 |          |  |
|      | Kumasi, Ohawu, Komenda,             |           | Tamale, Bawku, W      | Va (~20 | NARS     |  |
|      | Pokuase, Ejura (~20 on-farm         |           | on-farm sites in re   | elevant | WAAPP,   |  |
|      | sites in relevant regions) regions) |           |                       |         |          |  |
|      | Varietal Tri                        | al + On   | farm Trial            |         | Other    |  |

| Raw san                         | ples            | 1                      | Cooked s           | amples      | Difference (cooked-raw) |                          |         |               |
|---------------------------------|-----------------|------------------------|--------------------|-------------|-------------------------|--------------------------|---------|---------------|
| Genotype                        | SE              | 1                      | Genotype           | SE          |                         | Genotype                 | SE      | 8             |
| Apomuden                        | 27.05           | a                      | PGA14442-1         | 35.64       | a                       | Ligri                    | 18.11   | а             |
| PGA14010-5                      | 20.18           | b                      | Apomuden           | 35.39       | a                       | PGA14442-1               | 16.82   | a             |
| PGA14011-43                     | 19.85           | b                      | PGA14010-5         | 32.65       | ab                      | PGA14398-4               | 14.16   | ab            |
| PGA14442-1                      | 18.81           | b                      | PGA14011-43        | 31.69       | ab<br>b                 | PGA14372-3<br>PGA14010-5 | 14.00   | abc           |
| PGA14351-4                      | 17.12           | b                      | Ligri              | 28.77       |                         |                          | 12.47   | abco          |
| PGA14008-9                      | 16.46           | bc                     | PGA14398-4         | 28.16       | bc                      | PGA14011-43              | 11.84   | 84 bcd        |
| Bohye                           | 16.34           | bc                     | PGA14372-3         | 27.00       | bcd                     | PGA14008-9               | 9.17    | $\mathbf{cd}$ |
| PGA14398-4                      | 14.00           | cd                     | PGA14008-9         | 24.21       | cd                      | Apomuden                 | 8.34    | d             |
| PGA14372-3 13.00 de             |                 | de                     | Bohye              | 23.12       | d                       | Bohye                    | 6.77    | d             |
| Ligri                           | 10.65           | e                      | PGA14351-4         | 16.70       | е                       | PGA14351-4               | -0.42   | е             |
| Raw sa                          | mples           | 2                      | Cooked s           | amples      | : 4                     | Difference (c            | ooked-r | aw)           |
| Genotype                        | SE              |                        | Genotype           | SE          |                         | Genotype                 | SE      | 10            |
| Apomuden                        | 6.77            | a                      | Ligri              | 8.76        | a                       | Ligri                    | 5.17    | a             |
| PGA14010-5                      | 6.00            | ab                     | PGA14010-5         | 8.46        | ab                      | PGA14372-3               | 3.95    | ab            |
| PGA14011-43                     | 5.75            | b                      | PGA14372-3         | 8.31        | ab                      | PGA14398-4               | 3.25    | bc            |
| PGA14008-9                      | 5.26            | bc                     | PGA14442-1         | 7.91        | ab                      | PGA14442-1               | 3.23    | bc            |
| PGA14351-4                      | 5.26            | bc                     | PGA14011-43        | 7.87        | ab                      | PGA14010-5               | 2.45    | bcc           |
| Bohye                           | 4.86            | cd                     | PGA14398-4         | 7.72        | ab                      | PGA14011-43              | 2.12    | $\mathbf{cd}$ |
| PGA14442-1                      | 4.69            | cd                     | Apomuden           | 7.26        | bc                      | Bohye                    | 1.70    | $\mathbf{cd}$ |
| PGA14398-4                      | A14398-4 4.47 d |                        | Bohye              | 6.57        | bc                      | PGA14008-9               | 0.80    | de            |
| PGA14372-3 4.36 d               |                 | PGA14008-9             | 5.96               | cd          | Apomuden                | 0.48                     | de      |               |
| Ligri                           | 3.59            | е                      | PGA14351-4         | 4.93        | d                       | PGA14351-4               | -0.33   | е             |
| Sweetness score                 |                 |                        | Cooked taste score |             |                         | Aroma score              |         |               |
| Genotype (1 low to 9)           |                 | Genotype (1 best to 9) |                    | 192 - 192   | Genotype (1 low to 9)   |                          |         |               |
| Apomuden                        | 6.67            | а                      | PGA14010-5         | 6.00        | a                       | Apomuden                 | 7.00    | а             |
| Bohye                           | 6.00            | ab                     | PGA14442-1         | 5.50        | а                       | PGA14008-9               | 6.00    | ab            |
| Ligri                           | 6.00            | ab                     | PGA14351-4         | 4.50        | ab                      | Bohye                    | 5.33    | bc            |
| PGA14008-9                      | 5.67            | abc                    | Apomuden           | 4.00        | $\mathbf{bc}$           | PGA14010-5               | 5.00    | bcd           |
| PGA14372-3                      | 5.67            | abc                    | PGA14008-9         | 4.00        | $\mathbf{bc}$           | PGA14398-4               | 5.00    | bcd           |
| DCA14010 5 5.00 shad DCA14979.9 |                 | 0 00                   | 1.1                | D/1A14440 1 | E 00                    | 1 - 1                    |         |               |

Fig 1. Sweetpotato breeding location and scheme in Ghana

## **METHODS**

- Evaluated freshly harvested roots (7 entries and 3 checks) from advanced trial from Tamale (northern Ghana)
- Determined sugars, starch and dry matter content of raw and boiled roots using NIRS and previously-developed calibrations
- Sucrose equivalent (SE) calculated: non-sweet <12, low 12-20, moderate 21-28, high 29-37, very high >38% on dry or fresh basis
- Used sensory panel to evaluate sweetness, cooked taste (liking), and aroma
- Used refractometer to determine soluble solids in liquid expressed from grated raw and cooked samples

## RESULTS

Cooking effects accounted for much of the variance in SE (Table 1)

Table 1. Analysis of variance of sweetness of cooked and raw genotypes (treatment) from 2017 advanced trial in Tamale

| PGA14010-5  | 5.00 | abcd | PGA14372-3  | 3.33 | cd            | PGA14442-1  | 5.00 | bcd |
|-------------|------|------|-------------|------|---------------|-------------|------|-----|
| PGA14442-1  | 5.00 | bcd  | PGA14398-4  | 3.33 | $\mathbf{cd}$ | Ligri       | 4.67 | bcd |
| PGA14398-4  | 4.33 | cd   | PGA14011-43 | 2.67 | de            | PGA14372-3  | 4.00 | cd  |
| PGA14011-43 | 3.67 | d    | Bohye       | 1.67 | ef            | PGA14011-43 | 3.33 | de  |
| PGA14351-4  | 3.00 | d    | Ligri       | 1.00 | f             | PGA14351-4  | 2.00 | е   |

Total sugars determined by refractometer correlated with SE in raw, but not in cooked samples.

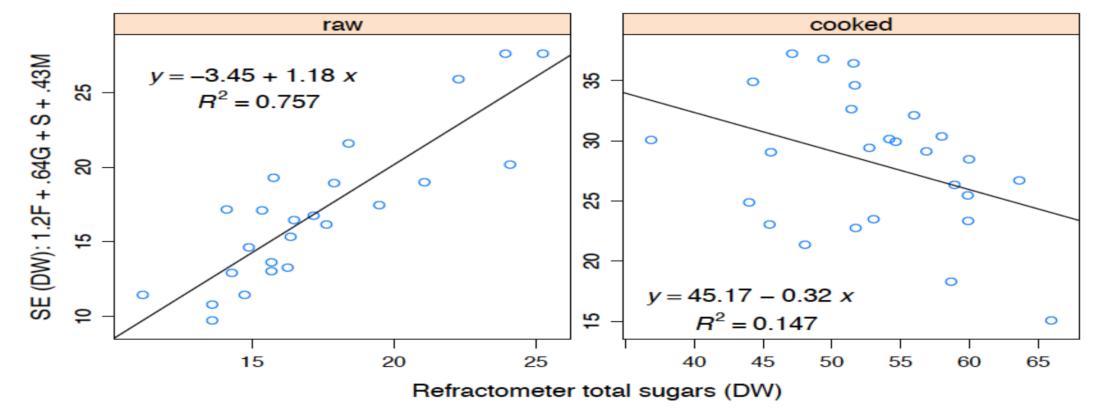



Fig 2. Refractometer vs sucrose equivalent in raw (left) and cooked (right)

Table 3. Quality characteristics of recently released varieties in Ghana

|                            | AP3A  | 442162 |
|----------------------------|-------|--------|
| dry matter (%)             | 35.90 | 32.92  |
| sucrose (%DM)              | 6.20  | 8.66   |
| fructose (%DM)             | 1.74  | 1.92   |
| glucose (%DM)              | 2.85  | 3.14   |
| starch (%DM)               | 66.96 | 65.28  |
| sweetness equivalent (%DM) | 10.11 | 12.97  |



|                      | $\mathbf{D}\mathbf{f}$ | Sum Sq | Mean Sq | F value | $\Pr(>F)$ |
|----------------------|------------------------|--------|---------|---------|-----------|
| Genotype             | 9                      | 914    | 101.6   | 25.28   | < 0.001   |
| Treatment            | 1                      | 1583   | 1582.8  | 393.80  | < 0.001   |
| Genotype x Treatment | 9                      | 321    | 35.6    | 8.86    | < 0.001   |
| Residuals            | <b>31</b>              | 125    | 4.0     |         |           |

On dry weight basis, SE values of cooked samples ranged from high to low, while values of raw samples ranged from moderate to nonsweet. Changes in SE between cooked and raw samples varied significantly among genotypes (Table 2, tier 1)

sweetness equivalent (%FW) 3.634.24 cooked taste (1 best to 9)4.503.50

### CONCLUSIONS

Adapted non- and low-sweet clones developed in Ghana NIRS and taste are currently necessary to identify amylase variants Assessment following curing and storage is needed Understanding of user preferences and requirements is needed







Poster authors: Ted Carey, Jolien Swanckaert, Damian Laryea, Tommy Tuffour, Eric Dery, Daniel Akansake, John Saaka, Erna Abidin, Kwabena Acheremu, Kwadwo Adofo, Ernest Baafi **Contact:** Ted Carey (e.carey@cgiar.org)