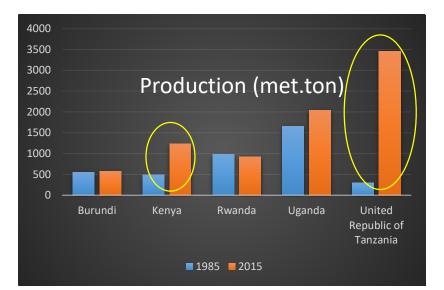
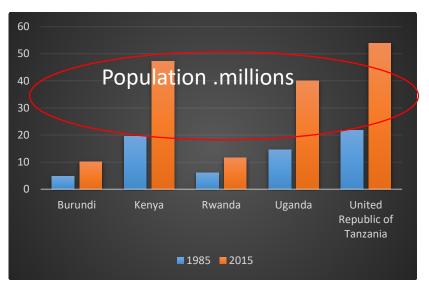
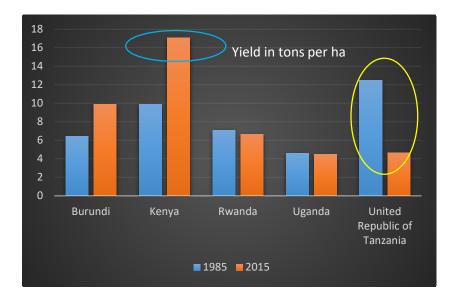
GENETIC VARIABILITY, HERITABILITY AND GENOME WIDE ASSOCIATION STUDY (GWAS) OF CONTINUOUS STORAGE ROOT FORMATION AND BULKING TRAITS IN SWEETPOTATO (*Ipomoea batatas*)


By Astere Bararyenya


Supervisors:
Prof. Phinehas Tukamuhabwa (Mak University)
Dr. Robert O. Mwanga (CIP)
Dr. Yao Nasser (ILRI-BecA) & Dr. Mercy Kitavi (CIP)


SWEETPOTATO BREEDER'S MEETING 4-9 JUNE 2018

BACKGROUND

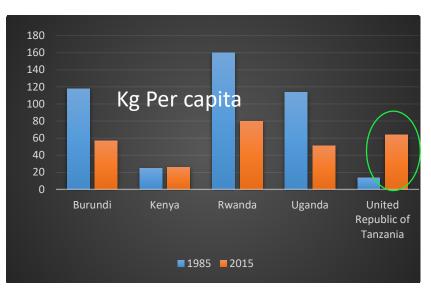


Fig2 (a, b, c, d). Information of the development of sweetpotato production in Eastern African countries in 1985 and 30 years later in 2015 (FAO, 2015)

BACKGROUND. CON'T

Key yield indicators	Average period range	Extreme ranges	Source
Yield	12t/ha	3-70t/ha	(Van Vugt, D., 2017, Kukimura, H., et al., 1990)
Maturity period	12 to 16 weeks	12-21 weeks	(Ravi, V., et al.,2009)
Storage initiation period	35 to 60 DAP	7 to 112 DAP	(Wilson, 1982)
Max SR number	49-56 DAP	30 to 112 DAP	Wilson and Lowe (1973)
	>200), genetic	variability i	aces >800, and s important for jida <i>et al</i> . 2007)

BACKGROUND. CON'T

Unmature plant

Maturity signs~senescence

NCSRFAB

Y1

CSRFAB

Y2

In Uganda, 90% (n=350) of farmers have no knowledge of the maturity periods (Bashaasha *et al.*, 1995) of their various varieties.

- Maturity period vary with cultivar and Environment
- Senescence signs not always true

yields are ~ speed and the duration of the period of initiation and bulking

PROBLEM STATEMENT

✤ 27 varieties have been released (Mwanga et al., 2011; Ssemakula et al., 2013)

Farmers still prefer their local varieties (low yielding and susceptible to disease)

These local varieties are adapted to continuous harvesting, a main practice of farmers

variety selection based on one-time harvest

No breeding information to understand this common practice in small-scale farmers

JUSTIFICATION

CSRFAB traits are relevant under high population growth context and low food source.

Understanding the mode of inheritance of CSRFAB varieties will increase adoption and production in small-scale farmers.

Identification of SNP markers associated with CSRFAB in sweetpotato genotypes will facilitate acceleration of breeding through molecular assisted selection

OBJECTIVES

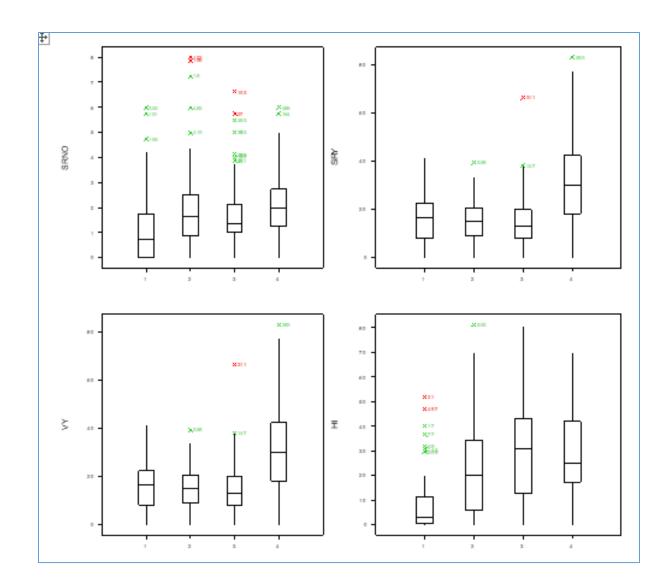
OVERALL OBJECTIVE:

Contribute to sustainable improved food security among small-scale sweetpotato farmers

SPECIFIC OBJECTIVES

- 1. Identify genetic variability and growth patterns associated with CSRFAB in sweetpotato.
- 2. Determine the inheritance patterns and breeding values of CSRFAB traits for future breeding decisions for high yielding sweetpotato varieties
- 3. Identify SNP markers associated with CSRFAB in sweetpotato.
- 4. Convert identified SNPs into Kompetitive allele specific PCR (KASP) assays for SNP marker validation
- 5. Discover QTL associated with CSRFAB traits in F1 sweetpotato population

MATERIALS AND METHODS


Study 1: Identify genetic variability and growth patterns associated with CSRFAB in sweetpotato

- Study area: Two sites
- Test Genotypes: 130 diverse clones
- Design: Repeated measurements (4 waves), genotypes arranged in RCBD, 2 Replications
- Period: Second rains (2016) & first rains (2017)
- Data collection: (i) growth parameters (ii) yield and yield component parameters (iii) Diseases (SPVD) and weevil damage

DATA ANALYSIS

- Genstat 11 edition were used
- The general model used is Y = Fixed Effect model + Random effect model
 - Variance components extracted and used to estimate broad-sense heritabilities for the assessed traits
 - ANOVA with treatments considered fixed effects, and summary statistics of mean squares generated to test the significance of the different sources of variation
 - Phenotypic correlations of the different traits were estimated using means of the datasets generated

General observations

- genotypes increase
 SRN at 4th harvest
- More genotypes displays high yields at 4th harvest
- genotypes have more vine yield at 4 harvest
- HI tends to be stable and high as HT increases

Fig 3: Variability and distribution of CSRFAB across the four harvesting times at 3MAP, 4MAP, 5MAP and 6MAP in 2016 & 2017 combined

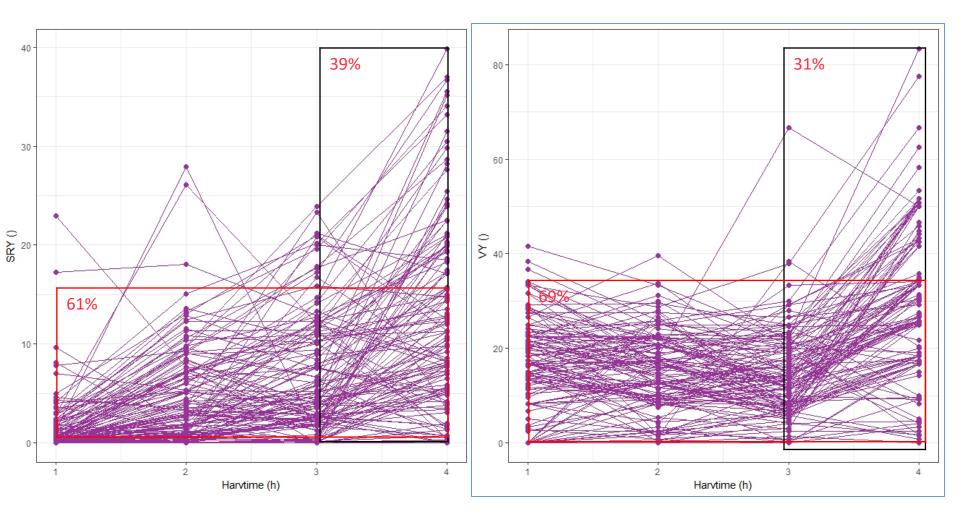
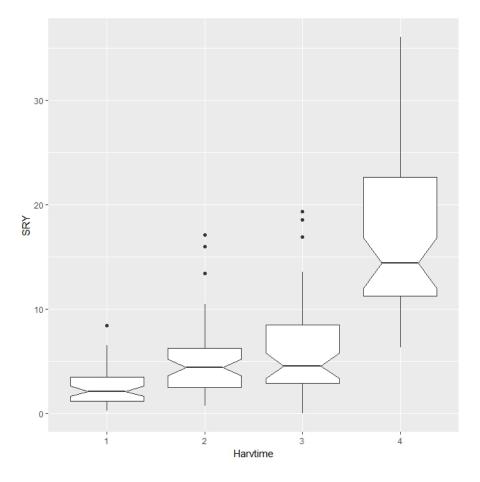
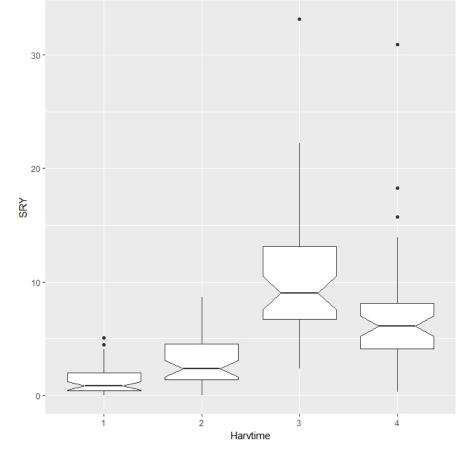


Fig4a. show the storage yield trend over 4 harvesting ting of 130 sweetpotato genotypes screened for continuous storage root formation and bulking.


1= 3MAP, 2=4MAP, 3=5MAP, 4=6MAP


Fig4b. show the Vine yield trend over 4 harvesting ting of 130 sweetpotato genotypes screened for continuous storage root formation and bulking. 1= 3MAP, 2=4MAP, 3=5MAP, 4=6MAP

4	A1	A10	A11	A12	A13	A14	A15	A16	A17	A18
	A19	A2	A20	A21	A22	A23	A24	A25	A26	A27
40:	A28	A29	A3	A30	A31	A32	A33	A34	A35	A36
48=	A37	A38	A39	A4	A40	A41	A42	A43	A44	A45
401.	A46	A47	A48	A49	A5	A50	A6	A7	A8	A9
*8=- \$8:_	B1	B10	B11	B12	B13	B14	B15	B16	B17	B18
18=-	B19	B2	820	B21	B22	B23	B24	B25	B26	827
40=-	B28	B29	В3	B30	B31	B32	B33	B34	B35	B36
10-	B37	B38	B39	B4	B40	841	B42	B43	844	B45
4	B46	B47	B48	B49	B5	B50	B51	852	853	B54
1	B55	B56	857	B58	B59	B6	B60	B61	B62	B63
4	B64	B65	B66	B67	B68	B69	87	870	871	B72
朝三,	B73	B74	875	B76	877	878	B79	88	B80	89

Genotype growth behavior. Each yield genotype where plotted for 4 harvesting time.

Harvtime

- Fifty-one clones (39%) exhibited continuous storage root formation and bulking properties.
- High bulking speed
- Yield increase as harvest time increases

- 81 clones (61%) are determinate in bulking and had pick at 5 MAP
- On average yield is reduced as harvest time increase

Table 3. shows the model fit and factor significances across the location and season. Strong linear and quadratic effect across treatments and their interactions was observed in most of studied parameters

Fixed term	DDF	SRN_P	SRYLD	VY	HI	CRW	CRN
Seas	1	297.81***	264.12***	2676.87***	257.64***	92.55***	180.46***
Loc	1	329.64***	0.91NS	214.84***	4.12*	21.47***	404.33**
ENTRY	129	1731.91***	827.88***	772.14***	951.76***	642.87***	1269.26***
Lin	1	91.85***	729.43***	9.41**	2589.96***	755.63***	441.95***
Quad	1	11.25***	14.63***	2.91NS	368.28***	10.07**	0.41NS
HT	1	1.89NS	0.92NS	50.4***	122.89***	0.05NS	0.04NS
Seas.Lin	1	2.8NS	52.99***	108.48***	784.95***	7.23**	7.69**
Seas.Quad	1	24.52***	9.07**	3.81NS	425.06***	4.46*	23.32***
Loc.Lin	1	15.19***	72.62***	8.88**	891.87***	0.07NS	1.12NS
Loc.Quad	1	12.18***	7.96**	10.68**	590.24***	2.81NS	1.18NS
ENTRY.Lin	129	180.41**	369.61***	166.82*	250.51***	235.48***	209.64***
ENTRY.Quad	129	127.35NS	125.54NS	124.39NS		125.77NS	141.79NS
Seas.Loc.ENTRY	126	278.39***	388.37***	288.88***	219.3***	183.49***	198.57***
Seas.Loc.ENTRY.Lin	381	527.02***	1079.23***	468.13**	400.62NS	584.97***	444.23**
Seas.Loc.ENTRY.Quad	372	403.87NS	452.72**	321.58NS	330.11NS	289.48NS	303.86NS

Wald stat significance for storage root number per plant, storage yield (tons/ha), vine yield (tons/ha), harvest index, storage root diameter (mm), storage root length (mm), commercial root number and weight of one hundred and thirty (130) sweetpotato genotypes across two locations (Namulonge and Serere) and two seasons (2016B and 2017A) in Uganda were strongly significant in most cases.

Table4. shows the overall growth mean trend over four harvesting time points across location and season, the % of change between 4 (recommended harvesting period in the study areas) and 6MAP (extended harvesting time) and their respective growth coefficients (intercept. Linear and quadratic slopes).

Location	Season	Traits	3MAP	4MAP	5MAP	6MAP	% of change	а	b1	b2	R2 Lin	R2 Quad
NaCRRI	2016B	SRN_P	1.19	1.82	1.7	2.11	41	1.2	1.5	-0.2	0.81	0.81
NaCRRI	2017A	SRN_P	2	2.09	2.51	1.67	-84	2.2	2.7	-0.4	0.39	0.93
NaSARRI	2016B	SRN_P	0.46	0.64	0.42	1.02	60	-0.2	0.25	-0	0.73	0.74
NaSARRI	2017A	SRN_P	0.99	1.6	2.03	2.33	30	1.1	1.24	-0.1	0.95	1
NaCRRI	2016B	SRY	1.35	4.53	6.75	12.8	600	-0	-0.5	0.6	0.94	0.99
NaCRRI	2017A	SRY	4.12	4.42	7.74	6.92	-82	-4	4.69	-0.5	0.83	0.92
NaSARRI	2016B	SRY	0.45	0.51	0.36	5.1	474	2.44	-2.6	0.6	0.56	0.83
NaSARRI	2017A	SRY	1.35	6.29	17.6	27.6	994	0.93	-3	1.69	0.92	0.99
NaCRRI	2016B	VY	26.5	22.6	24.6	24.6	0	18	24.9	-3.4	0.45	0.78
NaCRRI	2017A	VY	25.5	27.4	30.6	26.4	-417	-24	30.7	-4.2	0.54	0.93
NaSARRI	2016B	VY	17	10.9	10.5	0.32	-1014	-15	20.3	-3.5	0.02	0.79
NaSARRI	2017A	VY	58	48.6	62.8	72.7	991	-33	46.1	-5.2	0.7	0.81

Table 5. Pearson's correlation coefficients of CRW, HI, NCRW, NOCR, NONCR, NOSR_P, SRDIA, SRLG and SRY in the 130 sweetpotato genotypes across two locations (Namulonge and Serere) and two seasons (2016B and 2017A) (N=4160) in Uganda

	CRW	н	NCRW	NOCR	NONCR	NOSR_P	SRDIA	SRLG	SRY	VY
CRW	-									
ні	0.6467***	-								
NCRW	0.2249*	0.2809*	-							
NOCR	0.6526***	0.5617**	0.3299*	-						
NONCR	0.093NS	0.215*	0.4953**	0.2798*	-					
NOSR_P	0.4898**	0.5083**	0.4925**	0.7844***	0.6944***	-				
SRDIA	0.6889***	0.5749**	0.2607*	0.5935***	0.185NS	0.4931***	-			
SRLG	0.5265**	0.4016**	0.1934NS	0.4236***	0.024NS	0.2832*	0.4918***	-		
SRY	0.9919***	0.654***	0.3013*	0.6666***	0.1235NS	0.5174***	0.6935***	0.5352***	-	
VY	0.3506*	0.1895NS	0.0799NS	0.2219*	-0.044NS	0.1072NS	0.2824**	0.2213*	0.3584*	-

High positive correlation significance was observed between SRY and CRW (.9919), NOSR_P and NOCR (0.7844), NOSR_P and NONCR (.6944), SRY and SRDIA (.6935), SRDIA and CRW (.6889), SRY and NOCR (.6666), SRY and HI (.654), NOCR and CRW (.6526).

The high correlation between traits implies simultaneously selection of the traits for CSRFAB

Name	Code	3MAP	4MAP	5MAP	6MAP	Change 5-6MAP	%increase
Huarmayano	B80	3.9	2.4	9.1	36.1	27.0	297
KML956	A15	5.0	8.4	19.3	33.6	14.3	74
KML872	A32	2.2	5.0	12.9	33.2	20.3	158
NASPOT1	A24	4.4	6.7	5.2	31.0	25.8	497
MSD380	B4	3.7	10.5	9.2	30.2	21.0	229
PAL94Silkomoyaka	A9	3.0	6.5	9.4	29.7	20.3	216
PAL133TEGERERE	A8	2.0	1.5	6.9	29.2	22.3	322
KYABAFURUKI	B73	5.8	16.0	2.6	27.8	25.1	954
MPG1128	A11	2.1	10.0	7.7	26.4	18.7	243
ARA209	B2	3.4	4.0	10.4	26.2	15.8	152

These 10 genotypes are potential sources of genes for breeding for CSRFAB

STUDY 2: DETERMINE THE INHERITANCE PATTERNS AND BREEDING VALUES OF CSRFAB TRAITS FOR FUTURE BREEDING DECISIONS FOR HIGH YIELDING SWEETPOTATO VARIETIES

Locations: Namulonge , Serere

Test Genotypes: 280 genotypes

Traits: Resistance and non-resistance to whitefly

Season: 1st rains (2017) & 2nd rains (2017)

Mating design: North Carolina II design method

TABLE. SUMMARY OF CROSSING, MATING DESIGN AND SEED OBTAINED AT NAMULONGE

_			NCSRFAB						(CSRFAB				
			A2	A12	A17	A19	A24	A18	A22	A30	A33	A41		
										NASPOT	MSK			
		Code	EJUMULA	TANZANIA	SILK(1254)	SPK004	NASPOT1	RAK819	MAGABALI	7	1040	UKEREWE		
		B1	269	8	0	135	532	2	138	216	60	1	RESISTO	
_	,	B2	156	60	17	29	50	0	19	10	54	50	ARA209	
		B54	250	31	0	697	232	18	0	200	81	7	NK1081L	
NUSKFAD	ן ר ר	B56	450	39	0	109	78	135	10	731	55	88	NEW KAW	/OGO
Ū	-	B73	0	129	20	106	85	0	3	40	133	17	KYABAFUR	RUKI
		B80	790	0	0	114	974	45	0	78	0	414	HUARMAY	ANO
		B3	1	150	NS	48	43	0	2	52	64	0	HMA496	
		B9	13	13	7	134	8	11	44	23	1	34	MARY	
USKFAD		B17	0	27	8	17	10	66	2	39	35	0	MBR536	
FAD	ר > כ	B43	0	26	2	6	0	17	0	3	0	4	WAGABOL	LIGE
		B44	60	56	2	39	60	54	21	17	15	18	MUGAND	E
		B49	2	8	9	22	21	22	0	19	44	0	ARA22	

- 5 seedling per cross were multiplied for experiment set up
- 59/100 successful crosses

- Data generated from both the seedling and clonal trials will be subjected to parent-offspring analysis procedures that will enable quantification of heritabilities
- Mixed linear models (MLM) for analysis (Felipe, 2015)
 Matrix notation for MLD

Fixed effect:

mean + Crosses + Female + male + Female * Male + Crosses * Female + Crosses * Male

Random:

Replication + Replication * Crosses.

DATA NOT ANALYSED

STUDY 3: IDENTIFY LOCI ASSOCIATED WITH PHENOTYPIC TRAITS FOR CSRFAB SP GENOTYPES

- ✤ Locations: Namulonge, Serere
- Season: November, 2016 to May, 2017
- Test Genotypes & Traits: 280 diverse F1 clones Disease resistance, agronomic and morphological traits
- Experimental design: Repeated measurements
- Data collection: (i) growth parameters (ii) yield and yield component parameters (iii) Diseases (SPVD) and weevil damage

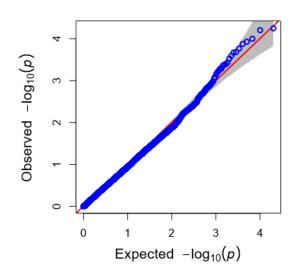
♦Genomic DNA extracted (Dellaporta *et al.*, 1983) and GBS sequencing libraries prepared


Sequencing performed using Illumina Hiseq2000 (Swarts *et al.*, 2014)

TASSEL-GBS pipeline (Glaubitz *et al.*, 2014) used to process the FASTQ sequence data into SNP calls based on *Ipomoea Trifida* reference genome

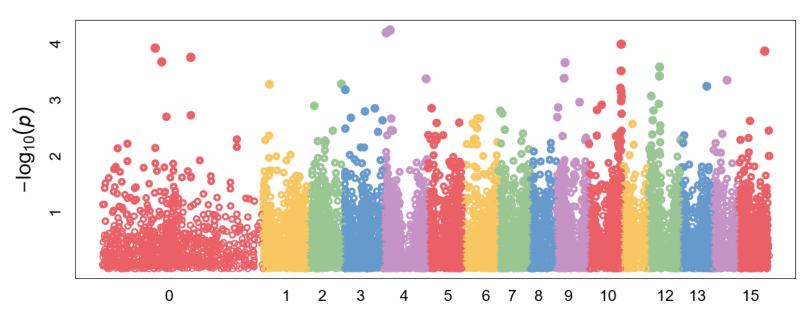
- Both the phenotypic means and average performance means best linear BLUPs extracted (R core team, 2013)
- Non-segregating and uninformative sites, imputed data were filtered at (MAF) = 0.01 (TASSEL v 5.2.9)
- This filtered dataset used in estimating PCA and kinship, both of which were important for subsequent statistical analyses

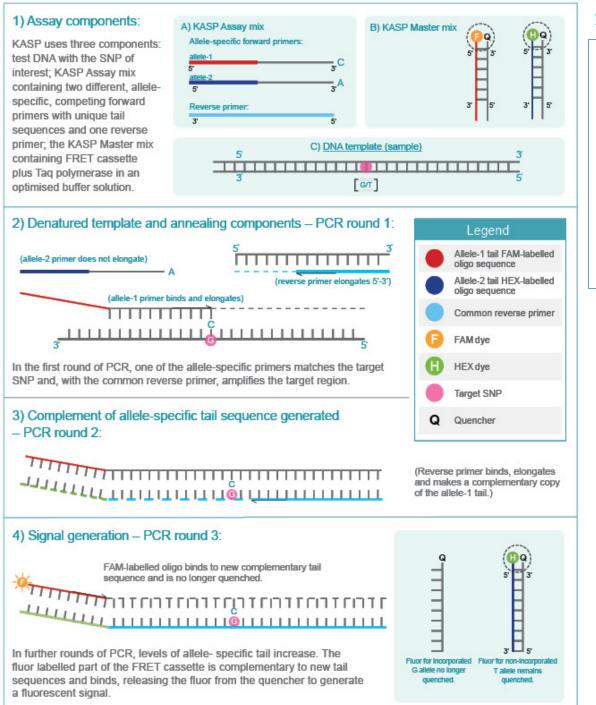
GWAS MODELS

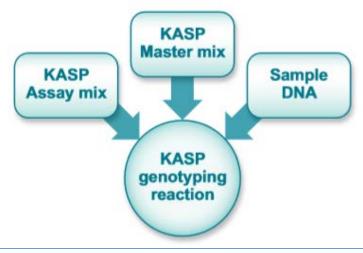

Mixed Linear Model (MLM)

Evaluations of the association mapping based on the quantile–quantile (Q–Q) plot, under the null hypothesis that there is no association between a SNP and the phenotype

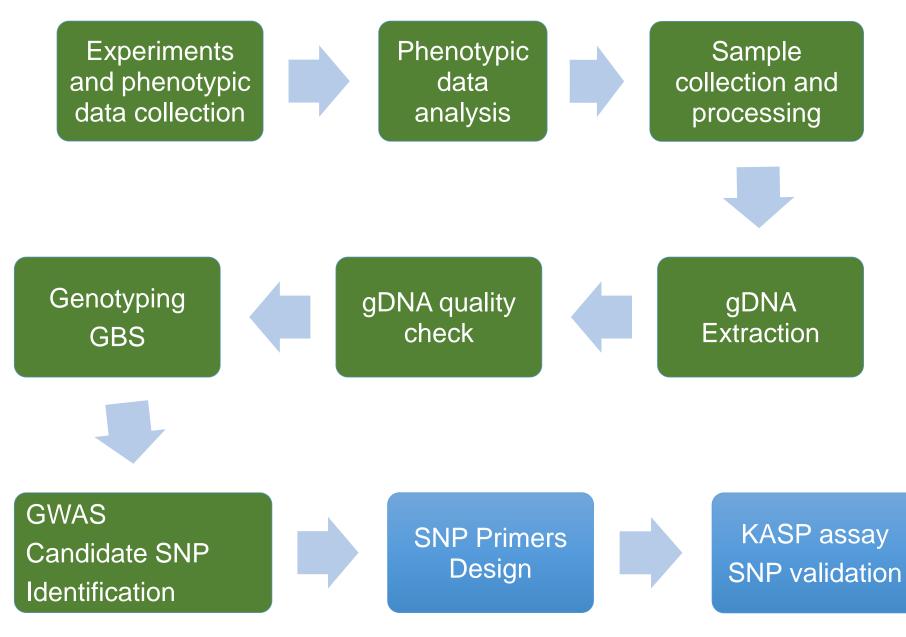
- SNPs with P values less than the 5 % Bonferroni threshold were considered to be significantly associated with phenotypes
- Chromosome-wise association signals were visualised from Manhattan plots generated using the qqman package of R software (R core team, 2013)


SOME PRELIMINARY RESULTS


.SRY


SNP	Chromoso	Position	P.value	Rsquare	
7569303	5	5124199	5.67E-05	0.238967	
7565444	5	2471646	6.26E-05	0.237455	
7571201	11	24234037	0.000101	0.230292	
7570133	1	39160001	0.000118	0.227909	
7566285	16	19672328	0.000134	0.226046	
7571641	1	65355185	0.000172	0.222308	
7555231	1	43954845	0.000207	0.219558	

.SRY


Study 4. Convert identified SNPs into KASP

- 1. Assay components
 - SNP-specific KASP Assay mix (2 specific forward+1 Common reverse)
 - universal KASP Master mix (reference dye, taq polymerase, free nucleotides and MgCl₂)
 - DNA samples,

- 2. PCR, followed by an end-point fluorescent read.
 - for homozygous SNP, only one of the two possible fluorescent signals will be generated.
 - For heterozygous, a mixed fluorescent signal will be generated.

ACKNOWLEDGEMENT

Donors

- CIP
- BecA- ILRI hub
- Makerere University
- ISABU
- Supervisors
- Audience

