The Sweetpotato Action for Security and Health in Africa (SASHA) is a five-year initiative designed to improve the food security and livelihoods of poor families in Sub-Saharan Africa by exploiting the untapped potential of sweetpotato. It will develop the essential capacities, products, and methods to reposition sweetpotato in food economies of Sub-Saharan African countries to alleviate poverty and under-nutrition.

Progress in Developing and Utilizing OFSP purée

Tawanda Muzhingi, Ph.D.
Food Scientist
FANEL
CIP-SSA
To develop appropriate production and storage methods for quality sweetpotato puree and ensure that products made from stored puree are safe and nutritious.

• The goal is to be able to store quality puree for four to six months without a cold chain and to ensure that the products made from stored puree are not markedly different to those from fresh puree.
OFSP Puree

- Steam and mashed product.
- 1.5kg of fresh OFSP = 1kg puree
- 5-7kg fresh OFSP -1kg OFSP flour
- Makes nutritious products
- Makes highly acceptable products
Commercialization of OFSP puree

- In Kenya we have SMEs processing OFSP puree and using the cold chain to supply larger retail bakeries in Nairobi
- The cold chain is expensive and inefficient
- There is need to develop a shelf-stable OFSP puree to increase uptake
Ensuring Safe and Nutritious OFSP puree

Research Article

Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

Derick Nyabera Malavi, Tawanda Muzhingi, and George Ooko Abong

1Department of Food Science, Nutrition and Technology, University of Nairobi, P.O. Box 29053, Nairobi 00625, Kenya
2International Potato Centre (CIP), Sub-Saharan Africa (SSA) Regional Office, Old Naivasha Road, P.O. Box 25171, Nairobi 00603, Kenya

Correspondence should be addressed to Derick Nyabera Malavi; nyaberad26@gmail.com

Received 29 November 2017; Accepted 26 February 2018; Published 2 April 2018
Ensuring Safe and Nutritious OFSP puree

Food Safety Knowledge, Attitude and Practices of Orange Fleshed Sweetpotato Puree Handlers in Kenya

Derick Nyabera Malavi 123*, George Ooko Abong 1, Tawanda Muzhingi 23
1. Department of Food Science, Nutrition and Technology, University of Nairobi, P.O Box 29053-00625 Nairobi, Kenya
2. Food and Nutrition Evaluation Laboratory (FANEL), Biosciences for east and central Africa (BeCA), International Livestock Research Institute (ILRI), International Potato Centre (CIP) Sub-Saharan Africa (SSA) Regional Office, Old Naivasha Road, P.O Box 25171-00603, Nairobi, Kenya
3. International Potato Centre (CIP) Sub-Saharan Africa (SSA) Regional Office, Old Naivasha Road, P.O Box 25171-00603, Nairobi, Kenya
Developing Shelf-Stable OFSP puree

Chemical preservatives
Potassium sorbate, sodium benzoate and citric acid
Together with vacuum Packing preserves OFSP puree shelf-life
By 3 months at Ambient conditions
Shelf-stable Puree is safe

Research Article
Effects of Acidification and Preservatives on Microbial Growth during Storage of Orange Fleshed Sweet Potato Puree

Joyce Ndunde Musyoka,1 George Ooko Abong,1 Daniel Mahuga Mbogo,2 Richard Fuchs,3 Jan Low,2 Simon Heck,4 and Tawanda Muzhingi2

1Department of Food Science, Nutrition and Technology, University of Nairobi, P.O. Box 29053-00625, Kangemi, Kenya
2International Potato Center (CIP), Sub-Saharan Africa (SSA) Regional Office, Old Naivasha Road, P.O. Box 25171-00603, Nairobi, Kenya
3Food and Markets Department, Natural Resources Institute of University of Greenwich, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK
4International Potato Center (CIP), Regional Office, Plot 106, Katalima Road, Naguru, P.O. Box 22274, Kampala, Uganda

Correspondence should be addressed to Tawanda Muzhingi: T.Muzhingi@cgiar.org

Received 14 September 2017; Revised 23 January 2018; Accepted 7 May 2018; Published 7 June 2018

Academic Editor: Alejandro Castillo

Copyright © 2018 Joyce Ndunde Musyoka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Product Development with Shelf-stable OFSP puree

With some modifications to the recipe, shelf-stable OFSP puree made bread with similar physiochemical properties, sensorial and organoleptic properties as fresh puree.

Two manuscripts submitted to Journals of Food Science and Open Agriculture
Table 4: Results for Proximate Composition of the OFSP Puree Composite Breads Compared to Standard White Bread (g kg\(^{-1}\) dry weight)

<table>
<thead>
<tr>
<th>Chemical composition</th>
<th>White bread</th>
<th>30% Fresh puree bread</th>
<th>30% T1 SS bread</th>
<th>30% T2 SS bread</th>
<th>40% Fresh puree bread</th>
<th>40% T1 SS bread</th>
<th>40% T2 SS bread</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>278.7±4.8(^{a})</td>
<td>301.4±16.9(^{b})</td>
<td>298.6±29.1(^{b})</td>
<td>296.3±10.7(^{b})</td>
<td>326.2±19.5(^{b})</td>
<td>319.2±16.6(^{b})</td>
<td>313.8±28.9(^{b})</td>
</tr>
<tr>
<td>Crude ash</td>
<td>15.9±4.9(^{a})</td>
<td>17.2±2.6(^{ab})</td>
<td>20.7±1.3(^{bc})</td>
<td>21.6±3.7(^{bc})</td>
<td>17.6±2.4(^{ab})</td>
<td>22.4±2.6(^{c})</td>
<td>21.8±2.4(^{bc})</td>
</tr>
<tr>
<td>Crude fat</td>
<td>61.6±1.05(^{a})</td>
<td>57.6±1.8(^{a})</td>
<td>58.7±4.2(^{a})</td>
<td>52.1±10.7(^{a})</td>
<td>59.1±5.0(^{a})</td>
<td>46.9±9.0(^{a})</td>
<td>65.2±18.1(^{a})</td>
</tr>
<tr>
<td>Crude protein</td>
<td>11.00±8.1(^{a})</td>
<td>110.7±5.1(^{a})</td>
<td>109.6±5.8(^{a})</td>
<td>108.7±2.8(^{a})</td>
<td>109.9±1.5(^{a})</td>
<td>111.2±9.3(^{a})</td>
<td>104.8±2.2(^{a})</td>
</tr>
<tr>
<td>Crude fiber</td>
<td>12.3±2.6(^{a})</td>
<td>18.3±8.1(^{a})</td>
<td>13.9±1.7(^{a})</td>
<td>14.6±3.6(^{a})</td>
<td>19.5±7.6(^{a})</td>
<td>14.9±2.1(^{a})</td>
<td>22.4±9.3(^{a})</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>794.1±11.3(^{a})</td>
<td>788.9±13.2(^{a})</td>
<td>788.4±8.8(^{a})</td>
<td>793.9±18.4(^{a})</td>
<td>785.3±4.2(^{a})</td>
<td>794.1±11.4(^{a})</td>
<td>775.8±7.3(^{a})</td>
</tr>
</tbody>
</table>

Values with the same superscript along a row are not significantly different at P< 0.05. *Values expressed in dry weight apart from moisture content, SS (Shelf Storable), SS-shelf-storable, T1 had 0.5% potassium sorbate+0.5% sodium benzoate+1% citric acid and T2 had 0.2% potassium sorbate+0.2% sodium benzoate+1% citric acid.
Physiochemical properties of fresh puree and shelf-stable puree bread

Figure 4: Specific Loaf Volume of bread g/cm³

*SS-shelf-storable, T1 had 0.5% potassium sorbate+0.5% sodium benzoate+1% citric acid and T2 had 0.2% potassium sorbate+0.2% sodium benzoate+1% citric acid
Applications for preservative treated Shelf-stable OFSP puree

Preservative treated Shelf-stable puree Slows yeast activity In doughs, hence Its good for baked And fried products Where yeast is not important and For smaller bakeries
Preservative free OFSP puree

Why?

- Clean label is premium now for food industry
- Increased shelf-life 12-36 months with no refrigeration
- Direct consumption of the OFSP puree as a food
- Diversified use of OFSP puree as a food ingredient for food industry and culinary application
Preservative free OFSP puree

CREDIT: SINNOVATEK LLC, Raleigh, NC, USA
How to achieve preservative free OFSP puree

Hotfill packing

- Hot filling is the process of sterilizing the product and inside of a bottle or container and cap or closure in order to ensure the safety of the product and prolong its shelf life (6-12 months)
- It is typically used for bottles containing <4.5pH products such as:
 - Juices
 - Nectars
 - Purees and Soups
 - Vegetable drinks
 - Marinades
How to achieve preservative free OFSP puree

Aseptic processing

• Aseptic processing is the process by which a sterile (aseptic) product (typically food) is packaged in a sterile container in a way that maintains sterility and increase shelf-life (12-36 months) with no refrigeration.
Aseptic OFSP puree processing for Africa and LIMC

Affordable, portable aseptic
And hot OFSP puree
Processing 2 tons per day
Capacity.

- Trials planned for SSA in 2019
- Market assessment for the
- Technology underway in 2018
Business opportunities: Partnering with industry leaders in Africa

Sasko Bakery, South Africa
• 1 million loaves daily
• Healthy bread choices
Business opportunities:
Affordable, nutritious, safe baby food

A high-hanging fruit?

• Mass demand
• OFSP puree based
• Food safety
• Packaging (50g sachets)
• Making it accessible for the poor
Business opportunities:
Puree for culinary applications

• Restaurants
• Institutional kitchens
• Contract food manufacturers
Dalberg study of OFSP investment and commercialization opportunities in Kenya, Malawi and South Africa

SUBSISTENCE

• Produced predominantly for on-farm consumption
• Where traded, mostly done through local informal markets at rural levels

COMMERCIALIZATION

• Produced in small part for formal commercial activity – either for local markets or exports
• Formally processed for traditional foods, or used for small scale baking and confectionary

INDUSTRIALIZATION

• Produced in large part for formal markets, processing and/or exports
• Transformed for wide range of applications (beyond baking). Used both visibly and invisibly

Source: Google images; Hellen Keller International; Dalberg analysis
Per country, three-step approach with a focus on demand, processor perceptions and competitiveness

1. Assessment of demand and opportunity for OFSP processing
- What is the size of various markets where OFSP could be an input?
- How attractive would be OFSP-based bread, vis-à-vis other options available to commercial actors and consumers?
- What do processors state as barriers to uptake for OFSP today?

2. Success factors for realizing identified opportunities
- If there is a business case for processing OFSP, what would be required to realize that business case?
- If there is no business case, what elements would need to be addressed to kickstart an eventual case / opportunity?

3. Synthesis and recommendations
- For identified commercial scale investment opportunities, what investment size would be needed?
- What additional considerations should be made?

Based on analyses across countries at the start of the study, we focused on including OFSP in bread, chips, crisps, baby food and consumed fresh.
Next steps for OFSP puree in Africa

- **Technologies**
 - Storage options (roots, puree)
 - Varieties best suited for puree

- **Supply chain management**
 - Quality control
 - Intensification
 - Social inclusiveness in long run

- **Scalability**
 - New commercial partnerships

- **Policy and standards**
 - Developing standards for biofortified varieties and products
THE END